Identification of a chromosomal deletion mutation and the dynamics of two major populations of Candidatus Liberibacter asiaticus in its hosts

2021 ◽  
Author(s):  
Cheryl Armstrong ◽  
Lijuang Zhou ◽  
Weiqi Luo ◽  
Ozgur Batuman ◽  
Olfemi Alabi ◽  
...  

Candidatus Liberibacter asiaticus (Las) is the prominent species of Liberibacter associated with huanglongbing, a devastating disease of citrus worldwide. In this study, we report the identification of a ~8.3 kb DNA region of the Las genome containing eight putative open reading frames (ORFs) flanked by two inverted repeats, which was not present in the Las str. psy62 genome. Comparisons with other genome sequences established this region as a unique genetic element associated with genome plasticity/instability. Primers specific for both the presence (Las wild-type) and absence (Las mutant) of this region were designed to study the population dynamics and host adaptation of the two strains. Las populations with and/or without the wild-type strain were detected and differentiated in >2,300 samples that included psyllids, periwinkle, and several species of citrus. In psyllids, although a mixed population of the wild-type and mutant was observed in most samples (88%), the wild-type Las was detected alone at a rate of 11%. In contrast, none of the infected citrus plants were positive for the wild-type alone, which harbored either the mutant strain alone (8%) or a mixed population of the mutant and wild-type (92%). Furthermore, the dynamics of these two major Las populations varied with different citrus hosts while an in-depth study on grapefruit that did not rapidly succumb to disease revealed that the population of mutant alone increased with time, indicating that the absence of this genetic element is associated with the fitness of Las in planta under the selection pressure of its host.

2021 ◽  
Author(s):  
Marcus Vinicius Merfa e Silva ◽  
Eduarda Regina Fischer ◽  
Mariana de Souza e Silva ◽  
Carolina Sardinha Francisco ◽  
Helvécio Coletta-Filho ◽  
...  

Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) and ‘Ca. Liberibacter americanus’ (CLam) are associated with HLB in Brazil, but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid – ACP) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, development of novel more efficient HLB control strategies is required. The multifunctional bacterial outer membrane protein OmpA is involved in several molecular processes between bacteria and their hosts and has been suggested as a target for bacterial control. Curiously, OmpA is absent in CLam in comparison to CLas, suggesting a possible role on host-interaction. Therefore, in the current study, we have treated ACPs with different OmpA-derived peptides aiming to evaluate the acquisition of CLas by the insect vector. Treatment of psyllids with 5 µM of Pep1, Pep3, Pep5 and Pep6 in artificial diet significantly reduced the acquisition of CLas, while increasing the concentration of Pep5 and Pep6 to 50 µM abolished this process. In addition, in planta treatment with 50 µM of Pep6 also significantly decreased the acquisition of CLas and sweet orange plants stably absorbed and maintained this peptide for as long as three months post the final application. Together, our results demonstrate the promising use of OmpA-derived peptides as a novel biotechnological tool to control CLas.


2019 ◽  
Vol 109 (12) ◽  
pp. 2046-2054 ◽  
Author(s):  
Jinyun Li ◽  
Zhiqian Pang ◽  
Shuo Duan ◽  
Donghwan Lee ◽  
Vladimir G. Kolbasov ◽  
...  

Huanglongbing (HLB) or greening currently is the most devastating citrus disease worldwide. The fastidious phloem-colonizing bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) is the causal agent of citrus HLB in Florida. Bactericides containing the active ingredient oxytetracycline (OTC) have been used in foliar spray to control citrus HLB in Florida since 2016. However, the minimum concentration of OTC required to suppress CLas in planta remains unknown. We developed a new method for evaluating the effects of OTC treatment on CLas titers in infected plants and determined the relationship between OTC residue levels and control levels achieved for CLas using mathematical modeling in greenhouse and field experiments. In both greenhouse and field, OTC spray did not reduce the titers of CLas, and it produced undetectable or mild levels of OTC residue in leaves within 7 days post-application (DPA). In greenhouse, OTC injection at 0.05 g per tree decreased CLas titers to an undetectable level (cycle threshold value ≥ 36.0) from 7 to 30 DPA and produced a residue level of OTC at 0.68 to 0.73 µg/g of fresh tissue over this period. In the field, OTC injection at 0.50 g per tree resulted in the decline of CLas titers by 1.52 log reduction from 14 to 60 DPA, with residue levels of OTC at 0.27 to 0.33 µg/g of fresh tissue. In both trials, a first-order compart model of OTC residue dynamics in leaves of trunk-injected trees was specified for estimating the retention of effective concentrations. Furthermore, nonlinear modeling revealed significant positive correlations between OTC residue levels in leaves and the control levels for CLas achieved. The results suggested that the minimum concentrations of OTC required to suppress CLas populations in planta to below the detection limit are 0.68 and 0.86 µg/g and that the minimum concentrations of OTC required for initial inhibition of CLas growth in planta are ∼0.17 and ∼0.215 µg/g in leaf tissues under greenhouse and field conditions, respectively. This finding highlights that a minimum concentration of OTC should be guaranteed to be delivered to target CLas in infected plants for effective control of citrus HLB.


2020 ◽  
Vol 33 (12) ◽  
pp. 1394-1404
Author(s):  
Kelley J. Clark ◽  
Zhiqian Pang ◽  
Jessica Trinh ◽  
Nian Wang ◽  
Wenbo Ma

Sec-delivered effector 1 (SDE1) from the huanglongbing (HLB)-associated bacterium ‘Candidatus Liberibacter asiaticus’ was previously characterized as an inhibitor of defense-related, papain-like cysteine proteases in vitro and in planta. Here, we investigated the contributions of SDE1 to HLB progression. We found that SDE1 expression in the model plant Arabidopsis thaliana caused severe yellowing in mature leaves, reminiscent of both ‘Ca. L. asiaticus’ infection symptoms and accelerated leaf senescence. Induction of senescence signatures was also observed in the SDE1-expressing A. thaliana lines. These signatures were apparent in older leaves but not in seedlings, suggesting an age-associated effect. Furthermore, independent lines of transgenic Citrus paradisi (L.) Macfadyen (Duncan grapefruit) that express SDE1 exhibited hypersusceptibility to ‘Ca. L. asiaticus’. Similar to A. thaliana, transgenic citrus expressing SDE1 showed altered expression of senescence-associated genes, but only after infection with ‘Ca. L. asiaticus’. These findings suggest that SDE1 is a virulence factor that contributes to HLB progression, likely by inducing premature or accelerated senescence in citrus. This work provides new insight into HLB pathogenesis. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2008 ◽  
Vol 98 (5) ◽  
pp. 592-599 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Uma Shankar Sagaram ◽  
Siddarame Gowda ◽  
Cecile J. Robertson ◽  
William O. Dawson ◽  
...  

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide, and is caused by a phloem-limited fastidious prokaryotic α-proteobacterium that is yet to be cultured. In this study, a combination of traditional polymerase chain reaction (PCR) and real-time PCR targeting the putative DNA polymerase and 16S rDNA sequence of ‘Candidatus Liberibacter asiaticus,’ respectively, were used to examine the distribution and movement of the HLB pathogen in the infected citrus tree. We found that ‘Ca. Liberibacter asiaticus’ was distributed in bark tissue, leaf midrib, roots, and different floral and fruit parts, but not in endosperm and embryo, of infected citrus trees. Quantification analysis of the HLB bacterium indicated that it was distributed unevenly in planta and ranged from 14 to 137,031 cells/μg of total DNA in different tissues. A relatively high concentration of ‘Ca. Liberibacter asiaticus’ was observed in fruit peduncles. Our data from greenhouse-infected plants also indicated that ‘Ca. Liberibacter asiaticus’ was transmitted systemically from infection site to different parts of the plant. Understanding the distribution and movement of the HLB bacterium inside an individual citrus tree is critical for discerning its virulence mechanism and to develop management strategies for HLB.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 627-629
Author(s):  
Weili Cai ◽  
Schyler Nunziata ◽  
Stefano Costanzo ◽  
Lucita Kumagai ◽  
John Rascoe ◽  
...  

‘Candidatus Liberibacter asiaticus’ is the unculturable causative agent of citrus huanglongbing disease. Here, we report the first citrus root metagenome sequence containing the draft genome of ‘Ca. L. asiaticus’ strain AHCA17, obtained from a pummelo tree in California. The assembled genome was 1.2 Mbp and resulted in 37 contigs (N50 = 158.7 kbp) containing 1,057 predicted open reading frames and 45 RNA-coding genes. This draft genome will provide a valuable resource in further study of ‘Ca. L. asiaticus’ genome diversity and pathogen epidemiology.


2020 ◽  
Author(s):  
Sheo Shankar Pandey ◽  
Fernanda N.C. Vasconcelos ◽  
Nian Wang

Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus huanglongbing, colonizes inside the phloem and is naturally transmitted by the Asian citrus psyllid (ACP). Here, we investigated the spatiotemporal CLas colonization in different tissues post ACP transmission. At 75 day-post-ACP-removal (DPR), CLas was detected in roots of all trees, but in the mature leaf of only one tree, of the nine plants that were successfully infected via ACP transmission, consistent with the model that CLas moves passively from the source to sink. CLas was detected in 11.1%, and 43.1% mature leaves, which were unfed by ACPs during transmission, at 75, and 365 DPR, respectively, unveiling active movement to the source tissue. The difference in colonization timing of sink and source tissues indicates CLas is capable of both passive and active movement with passive movement being dominant. At 225 DPR, leaves fed by ACPs during the young stage showed the highest ratio of HLB symptomatic leaves and highest CLas titer, followed by that of leaves emerged post ACP removal, and mature leaves not fed by ACPs. Importantly, our data showed that ACPs were unable to transmit CLas via feeding on mature leaves. It is estimated that it takes at most three years for CLas to infect the whole tree. Overall, the spatiotemporal detection of CLas in different tissues after ACP transmission helps visualize the infection process of CLas in planta and subsequent HLB symptom development, and provides the knowledge supporting that young leaves should be the focus of HLB management.


2019 ◽  
Vol 21 (1) ◽  
pp. 109-123 ◽  
Author(s):  
Maxuel O. Andrade ◽  
Zhiqian Pang ◽  
Diann S. Achor ◽  
Han Wang ◽  
Tingshan Yao ◽  
...  

2017 ◽  
Vol 5 (15) ◽  
Author(s):  
Madhurababu Kunta ◽  
Zheng Zheng ◽  
Fengnian Wu ◽  
John V. da Graca ◽  
Jong-Won Park ◽  
...  

ABSTRACT We report here the draft genome sequence of “Candidatus Liberibacter asiaticus” strain TX2351, collected from Asian citrus psyllids in south Texas, USA. The TX2351 genome has a size of 1,252,043 bp, a G+C content of 36.5%, 1,184 predicted open reading frames, and 52 RNA genes.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
F. Wu ◽  
Z. Zheng ◽  
X. Deng ◽  
Y. Cen ◽  
G. Liang ◽  
...  

The draft genome sequence of “ Candidatus Liberibacter asiaticus” strain YCPsy from an Asian citrus psyllid ( Diaphorina citri ) in Guangdong, China, is reported here. The YCPsy strain has a genome size of 1,233,647 bp, 36.5% G+C content, 1,171 open reading frames (ORFs), and 53 RNAs.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
W. Cai ◽  
Z. Yan ◽  
J. Rascoe ◽  
M. J. Stulberg

The draft genome sequence of “Candidatus Liberibacter asiaticus” strain TX1712, obtained from a Texas citrus tree, is reported here. Strain TX1712 has a draft genome size of 1,203,333 bp, a G+C content of 36.4%, 1,230 predicted open reading frames, and 41 RNAs and comprises 97.4% of the psy62 reference genome.


Sign in / Sign up

Export Citation Format

Share Document