scholarly journals Multilocus Characterization, Gene Expression Analysis of Putative Immunodominant Protein Coding Regions, and Development of Recombinase Polymerase Amplification Assay for Detection of ‘Candidatus Phytoplasma Pruni’ in Prunus avium

2019 ◽  
Vol 109 (6) ◽  
pp. 983-992 ◽  
Author(s):  
Dan Edward V. Villamor ◽  
Kenneth C. Eastwell

Western X (WX) disease, caused by ‘Candidatus Phytoplasma pruni’, is a devastating disease of sweet cherry resulting in the production of small, bitter-flavored fruits that are unmarketable. Escalation of WX disease in Washington State prompted the development of a rapid detection assay based on recombinase polymerase amplification (RPA) to facilitate timely removal and replacement of diseased trees. Here, we report on a reliable RPA assay targeting putative immunodominant protein coding regions that showed comparable sensitivity to polymerase chain reaction (PCR) in detecting ‘Ca. Phytoplasma pruni’ from crude sap of sweet cherry tissues. Apart from the predominant strain of ‘Ca. Phytoplasma pruni’, the RPA assay also detected a novel strain of phytoplasma from several WX-affected trees. Multilocus sequence analyses using the immunodominant protein A (idpA), imp, rpoE, secY, and 16S ribosomal RNA regions from several ‘Ca. Phytoplasma pruni’ isolates from WX-affected trees showed that this novel phytoplasma strain represents a new subgroup within the 16SrIII group. Examination of high-throughput sequencing data from total RNA of WX-affected trees revealed that the imp coding region is highly expressed, and as supported by quantitative reverse transcription PCR data, it showed higher RNA transcript levels than the previously proposed idpA coding region of ‘Ca. Phytoplasma pruni’.

Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 57 ◽  
Author(s):  
Kadriye Çağlayan ◽  
Vahid Roumi ◽  
Mona Gazel ◽  
Eminur Elçi ◽  
Mehtap Acioğlu ◽  
...  

High throughput sequencing of total RNA isolated from symptomatic leaves of a sweet cherry tree (Prunus avium cv. 0900 Ziraat) from Turkey identified a new member of the genus Robigovirus designated cherry virus Turkey (CVTR). The presence of the virus was confirmed by electron microscopy and overlapping RT-PCR for sequencing its whole-genome. The virus has a ssRNA genome of 8464 nucleotides which encodes five open reading frames (ORFs) and comprises two non-coding regions, 5′ UTR and 3′ UTR of 97 and 296 nt, respectively. Compared to the five most closely related robigoviruses, RdRp, TGB1, TGB2, TGB3 and CP share amino acid identities ranging from 43–53%, 44–60%, 39–43%, 38–44% and 45–50%, respectively. Unlike the four cherry robigoviruses, CVTR lacks ORFs 2a and 5a. Its genome organization is therefore more similar to African oil palm ringspot virus (AOPRV). Using specific primers, the presence of CVTR was confirmed in 15 sweet cherries and two sour cherries out of 156 tested samples collected from three regions in Turkey. Among them, five samples were showing slight chlorotic symptoms on the leaves. It seems that CVTR infects cherry trees with or without eliciting obvious symptoms, but these data should be confirmed by bioassays in woody and possible herbaceous hosts in future studies.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8210
Author(s):  
Xueqing Zhao ◽  
Ming Yan ◽  
Yu Ding ◽  
Yan Huo ◽  
Zhaohe Yuan

Background Sweet cherry (Prunus avium) is one of the most popular of the temperate fruits. Previous studies have demonstrated that there were several haplotypes in the chloroplast genome of sweet cherry cultivars. However, none of chloroplast genome of a sweet cherry cultivar were yet released, and the phylogenetic relationships among Prunus based on chloroplast genome data were unclear. Methods In this study, we assembled and annotated the complete chloroplast genome of a sweet cherry cultivar P. avium ‘Summit’ from high-throughput sequencing data. Gene Ontology (GO) terms were assigned to classify the function of the annotated genes. Maximum likelihood (ML) trees were constructed to reveal the phylogenetic relationships within Prunus species, using LSC (large single-copy) regions, SSC (small single-copy) regions, IR (inverted repeats) regions, CDS (coding sequences), intergenic regions, and whole cp genome datasets, respectively. Results The complete plastid genome was 157, 886 bp in length with a typical quadripartite structure of LSC (85,990 bp) and SSC (19,080 bp) regions, separated by a pair of IR regions (26,408 bp). It contained 131 genes, including 86 protein-coding genes, 37 transfer RNA genes and 8 ribosomal RNA genes. A total of 77 genes were assigned to three major GO categories, including molecular function, cellular component and biological process categories. Comparison with other Prunus species showed that P. avium ‘Summit’ was quite conserved in gene content and structure. The non-coding regions, ndhc-trnV, rps12-trnV and rpl32-trnL were the most variable sequences between wild Mazzard cherry and ‘Summit’ cherry. A total of 73 simple sequence repeats (SSRs) were identified in ‘Summit’ cherry and most of them were mononucleotide repeats. ML phylogenetic tree within Prunus species revealed four clades: Amygdalus, Cerasus, Padus, and Prunus. The SSC and IR trees were incongruent with results using other cp data partitions. These data provide valuable genetic resources for future research on sweet cherry and Prunus species.


2021 ◽  
Author(s):  
Håkon Tjeldnes ◽  
Kornel Labun ◽  
Yamila Torres Cleuren ◽  
Katarzyna Chyżyńska ◽  
Michał Świrski ◽  
...  

ABSTRACT•BackgroundWith the rapid growth in the use of high-throughput methods for characterizing translation and the continued expansion of multi-omics, there is a need for back-end functions and streamlined tools for processing, analyzing, and characterizing data produced by these assays.•ResultsHere, we introduce ORFik, a user-friendly R/Bioconductor toolbox for studying translation and its regulation. It extends GenomicRanges from the genome to the transcriptome and implements a framework that integrates data from several sources. ORFik streamlines the steps to process, analyze, and visualize the different steps of translation with a particular focus on initiation and elongation. It accepts high-throughput sequencing data from ribosome profiling to quantify ribosome elongation or RCP-seq/TCP-seq to also quantify ribosome scanning. In addition, ORFik can use CAGE data to accurately determine 5’UTRs and RNA-seq for determining translation relative to RNA abundance. ORFik supports and calculates over 30 different translation-related features and metrics from the literature and can annotate translated regions such as proteins or upstream open reading frames. As a use-case, we demonstrate using ORFik to rapidly annotate the dynamics of 5’ UTRs across different tissues, detect their uORFs, and characterize their scanning and translation in the downstream protein-coding regions.•Availabilityhttp://bioconductor.org/packages/ORFik


1991 ◽  
Vol 11 (3) ◽  
pp. 1770-1776
Author(s):  
R G Collum ◽  
D F Clayton ◽  
F W Alt

We found that the canary N-myc gene is highly related to mammalian N-myc genes in both the protein-coding region and the long 3' untranslated region. Examined coding regions of the canary c-myc gene were also highly related to their mammalian counterparts, but in contrast to N-myc, the canary and mammalian c-myc genes were quite divergent in their 3' untranslated regions. We readily detected N-myc and c-myc expression in the adult canary brain and found N-myc expression both at sites of proliferating neuronal precursors and in mature neurons.


2021 ◽  
Vol 11 (8) ◽  
pp. 1306-1312
Author(s):  
Li Song ◽  
Ningchao Du ◽  
Haitao Luo ◽  
Furong Li

This study aimed to identify the association of protein coding and long non coding RNA genes with immunotherapy response in melanoma. Based on RNA sequencing data of melanoma specimens, the expression levels of protein coding and long non coding RNA genes were calculated using the Kallisto RNA-seq quantification method, and differently expressed genes were detected using the DESeq2 method. Cox proportional hazards regression was used to evaluate the effects of gene expression on survival. According to the clinical data of 14 patients with drug response and 11 patients without drug response, 18 protein coding genes and 14 long non coding RNAs showed differential expressions (multiple of difference > 2 and P < 0.01 after correction), among which the coding genes of differential expression were significantly enriched through the process of cell adhesion (P < 0.01). The results of survival analysis showed that 18 coding genes and 14 long non coding RNA genes had significant effects on patient survival (P < 0.01). In this study, magnetic nanoparticles can be used to extract genomic DNA and total RNA due to their paramagnetism and biocompatibility, then transcriptome high-throughput sequencing was performed. The method has the advantages of removing dangerous reagents such as phenol and chloroform, replacing inorganic coating such as silica with organic oil, and shortening reaction time. Protein coding and long non coding RNA genes as well as magnetic nanoparticles may serve as potential cancer immune biomarker targets for developing future oncological treatments.


1994 ◽  
Vol 14 (12) ◽  
pp. 8219-8228
Author(s):  
P Belgrader ◽  
J Cheng ◽  
X Zhou ◽  
L S Stephenson ◽  
L E Maquat

Frameshift and nonsense mutations within the gene for human triosephosphate isomerase (TPI) that generate a nonsense codon within the first three-fourths of the protein coding region have been found to reduce the abundance of the product mRNA that copurifies with nuclei. The cellular process and location of the nonsense codon-mediated reduction have proven difficult to elucidate for technical reasons. We show here, using electron microscopy to judge the purity of isolated nuclei, that the previously established reduction to 25% of the normal mRNA level is evident for nuclei that are free of detectable cytoplasmic contamination. Therefore, the reduction is likely to be characteristic of bona fide nuclear RNA. Fully spliced nuclear mRNA is identified by Northern (RNA) blot hybridization and a reverse transcription-PCR assay as the species that undergoes decay in experiments that used the human c-fos promoter to elicit a burst and subsequent shutoff of TPI gene transcription upon the addition of serum to serum-deprived cells. Finally, the finding that deletion of a 5' splice site of the TPI gene results predominantly but not exclusively in the removal by splicing (i.e., skipping) of the upstream exon as a part of the flanking introns has been used to demonstrate that decay is specific to those mRNA products that maintain the nonsense codon. This result, together with our previous results that implicate translation by ribosomes and charged tRNAs in the decay mechanism, indicate that nonsense codon recognition takes place after splicing and triggers decay solely in cis. The possibility that decay takes place during the process of mRNA export from the nucleus to the cytoplasm is discussed.


The Auk ◽  
2019 ◽  
Vol 136 (4) ◽  
Author(s):  
Erik R Funk ◽  
Scott A Taylor

Abstract Avian evolution has generated an impressive array of patterns and colors in the ~10,000 bird species that exist on Earth. Recently, a number of exciting studies have utilized whole-genome sequencing to reveal new details on the genetics of avian plumage color. These findings provide compelling evidence for genes that underlie plumage variation across a wide variety of bird species (e.g., juncos, warblers, seedeaters, and estrildid finches). While much is known about large, body-wide color changes, these species exhibit discrete color differences across small plumage patches. Many genetic differences appear to be located in regulatory regions of genes rather than in protein-coding regions, suggesting gene expression is playing a large role in the control of these color patches. Taken together, these studies have the potential to broadly facilitate further research of sexual selection and evolution in these charismatic taxa.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yuming Zhao ◽  
Fang Wang ◽  
Su Chen ◽  
Jun Wan ◽  
Guohua Wang

MicroRNAs (miRNAs) are short (~22 nucleotides) noncoding RNAs and disseminated throughout the genome, either in the intergenic regions or in the intronic sequences of protein-coding genes. MiRNAs have been proved to play important roles in regulating gene expression. Hence, understanding the transcriptional mechanism of miRNA genes is a very critical step to uncover the whole regulatory network. A number of miRNA promoter prediction models have been proposed in the past decade. This review summarized several most popular miRNA promoter prediction models which used genome sequence features, or other features, for example, histone markers, RNA Pol II binding sites, and nucleosome-free regions, achieved by high-throughput sequencing data. Some databases were described as resources for miRNA promoter information. We then performed comprehensive discussion on prediction and identification of transcription factor mediated microRNA regulatory networks.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1324
Author(s):  
Garin Newcomb ◽  
Khalid Sayood

One of the important steps in the annotation of genomes is the identification of regions in the genome which code for proteins. One of the tools used by most annotation approaches is the use of signals extracted from genomic regions that can be used to identify whether the region is a protein coding region. Motivated by the fact that these regions are information bearing structures we propose signals based on measures motivated by the average mutual information for use in this task. We show that these signals can be used to identify coding and noncoding sequences with high accuracy. We also show that these signals are robust across species, phyla, and kingdom and can, therefore, be used in species agnostic genome annotation algorithms for identifying protein coding regions. These in turn could be used for gene identification.


2019 ◽  
Author(s):  
If Barnes ◽  
Ximena Ibarra-Soria ◽  
Stephen Fitzgerald ◽  
Jose Gonzalez ◽  
Claire Davidson ◽  
...  

Abstract Olfactory receptor (OR) genes are the largest multi-gene family in the mammalian genome, with over 850 in human and nearly 1500 genes in mouse. The expansion of the OR gene repertoire has occurred through numerous duplication events followed by diversification, resulting in a large number of highly similar paralogous genes. These characteristics have made the annotation of the complete OR gene repertoire a complex task. Most OR genes have been predicted in silico and are typically annotated as intronless coding sequences. Here we have developed an expert curation pipeline to analyse and annotate every OR gene in the human and mouse reference genomes. By combining evidence from structural features, evolutionary conservation and experimental data, we have unified the annotation of these gene families, and have systematically determined the protein-coding potential of each locus. We have defined the non-coding regions of many OR genes, enabling us to generate full-length transcript models. We found that 13 human and 41 mouse OR loci have coding sequences that are split across two exons. These split OR genes are conserved across mammals, and are expressed at the same level as protein-coding OR genes with an intronless coding region. Our findings challenge the long-standing and widespread notion that the coding region of a vertebrate OR gene is contained within a single exon.


Sign in / Sign up

Export Citation Format

Share Document