nonsense codon
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 9)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Edward Sanderlin ◽  
Melissa Keenan ◽  
Martin Mense ◽  
Alexey Revenko ◽  
Brett Monia ◽  
...  

Abstract Cystic fibrosis is caused by loss of function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene resulting in severe lung disease. Nearly 10% of cystic fibrosis patients have at least one CFTR allele with a nonsense mutation that generates a nonsense codon in the mRNA. Nonsense mutations can result in significant reduction of gene expression partially due to rapid mRNA degradation through the nonsense-mediated decay (NMD) pathway. It has not been thoroughly investigated which branch of the NMD pathway governs the decay of CFTR mRNAs containing nonsense codons. Here we utilized antisense oligonucleotides targeting NMD factors to evaluate the regulation of nonsense codon-containing CFTR mRNAs by the NMD pathway. Interestingly, we found that CFTR mRNAs with G542X, R1162X, and W1282X nonsense codons require UPF2, UPF3, and exon junction complex proteins for NMD, whereas CFTR mRNAs with the Y122X nonsense codon do not. Furthermore, we demonstrated that all evaluated CFTR mRNAs harboring nonsense codons were degraded by the SMG6-mediated endonucleolytic pathway rather than the SMG5/SMG7-mediated exonucleolytic pathway. Finally, we found that stabilization of CFTR mRNAs by NMD inhibition alone improved functional W1282X protein production, and improved the efficiency of aminoglycoside translational readthrough of CFTR-Y122X, -G542X, and -R1162X mRNAs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Santanu Mondal ◽  
Shu Wang ◽  
Yunan Zheng ◽  
Sudeshna Sen ◽  
Abhishek Chatterjee ◽  
...  

AbstractCitrullination is a post-translational modification (PTM) of arginine that is crucial for several physiological processes, including gene regulation and neutrophil extracellular trap formation. Despite recent advances, studies of protein citrullination remain challenging due to the difficulty of accessing proteins homogeneously citrullinated at a specific site. Herein, we report a technology that enables the site-specific incorporation of citrulline (Cit) into proteins in mammalian cells. This approach exploits an engineered E. coli-derived leucyl tRNA synthetase-tRNA pair that incorporates a photocaged-citrulline (SM60) into proteins in response to a nonsense codon. Subsequently, SM60 is readily converted to Cit with light in vitro and in living cells. To demonstrate the utility of the method, we biochemically characterize the effect of incorporating Cit at two known autocitrullination sites in Protein Arginine Deiminase 4 (PAD4, R372 and R374) and show that the R372Cit and R374Cit mutants are 181- and 9-fold less active than the wild-type enzyme. This technology possesses the potential to decipher the biology of citrullination.


2020 ◽  
Author(s):  
Jeffery M. Tharp ◽  
Oscar Vargas-Rodriguez ◽  
Alanna Schepartz ◽  
Dieter Söll

ABSTRACTWe recently described an orthogonal initiator tRNA (itRNATy2) that can initiate protein synthesis with noncanonical amino acids (ncAAs) in response to the UAG nonsense codon. Here we report that a mutant of itRNATy2 (itRNATy2AUA) can efficiently initiate translation in response to the UAU tyrosine codon, giving rise to proteins with an ncAA at their N-terminus. We show that, in cells expressing itRNATy2AUA, UAU can function as a dual-use codon that selectively encodes ncAAs at the initiating position and tyrosine at elongating positions. Using itRNATy2AUA, in conjunction with its cognate tyrosyl-tRNA synthetase and two mutually orthogonal pyrrolysyl-tRNA synthetases, we demonstrate that UAU can be reassigned along with UAG or UAA to encode two distinct ncAAs in the same protein. Furthermore, by engineering the substrate specificity of one of the pyrrolysyl-tRNA synthetases, we developed a triply orthogonal system that enables simultaneous reassignment of UAU, UAG, and UAA to produce proteins containing three distinct ncAAs at precisely defined sites. To showcase the utility of this system, we produced proteins containing two or three ncAAs, with unique bioorthogonal functional groups, and demonstrate that these proteins can be separately modified with multiple fluorescent probes.TOC Image


2020 ◽  
Vol 29 (1) ◽  
pp. 61-66
Author(s):  
Samantha J. Bryen ◽  
Emily C. Oates ◽  
Frances J. Evesson ◽  
Jessica K. Lu ◽  
Leigh B. Waddell ◽  
...  

2020 ◽  
Author(s):  
Santanu Mondal ◽  
Shu Wang ◽  
Yunan Zheng ◽  
Sudeshna Sen ◽  
Abhishek Chatterjee ◽  
...  

AbstractCitrullination is a post-translational modification (PTM) of arginine that is crucial for several physiological processes, including gene regulation and neutrophil extracellular trap formation. Despite recent advances, studies of protein citrullination remain challenging due to the difficulty of accessing proteins homogeneously citrullinated at a specific site. Herein, we report a novel technology that enables the site-specific incorporation of citrulline (Cit) into proteins in mammalian cells. This approach exploits an E. coli-derived engineered leucyl tRNA synthetase-tRNA pair that incorporates a photocaged-citrulline (SM60) into proteins in response to a nonsense codon. Subsequently, SM60 is readily converted to Cit with light in vitro and in living cells. To demonstrate the utility of the method, we biochemically characterized the effect of incorporating Cit at two known autocitrullination sites in Protein Arginine Deiminase 4 (PAD4, R372 and R374) and showed that the R372Cit and R374Cit mutants are 181- and 9-fold less active than the wild-type enzyme. This powerful technology possesses immense potential to decipher the biology of citrullination.


2019 ◽  
Author(s):  
Chan Wu ◽  
Bijoyita Roy ◽  
Feng He ◽  
Allan Jacobson

SUMMARYReadthrough of translation termination codons, also known as nonsense suppression, is a relatively inefficient process mediated by ribosomal A site recognition and insertion of near-cognate tRNAs. Multiple factors influence readthrough efficiency, including nonsense codon specificity and context. To determine whether nonsense codon position in a gene influences the extent of readthrough, we generated a series of LUC nonsense alleles and quantitated both readthrough and termination efficiencies at each nonsense codon in yeast cells lacking nonsense-mediated mRNA decay (NMD) activity. Readthrough efficiency for premature termination codons (PTCs) manifested a marked dependence on PTC proximity to the mRNA 3’-end, decreasing progressively across the LUC ORF but increasing with 3’-UTR lengthening. These effects were eliminated, and translation termination efficiency decreased considerably, in cells harboring pab1 mutations. Our results support a critical role for poly(A)-binding protein in the regulation of translation termination and suggest that inefficient termination is the trigger for NMD.


FEBS Journal ◽  
2019 ◽  
Vol 286 (23) ◽  
pp. 4675-4692 ◽  
Author(s):  
Guanwei Li ◽  
Shiwei Zhou ◽  
Chao Li ◽  
Bei Cai ◽  
Honghao Yu ◽  
...  
Keyword(s):  

2019 ◽  
Vol 20 (3) ◽  
pp. 522 ◽  
Author(s):  
Takayuki Katoh ◽  
Hiroaki Suga

Methods of genetic code manipulation, such as nonsense codon suppression and genetic code reprogramming, have enabled the incorporation of various nonproteinogenic amino acids into the peptide nascent chain. However, the incorporation efficiency of such amino acids largely varies depending on their structural characteristics. For instance, l-α-amino acids with artificial, bulky side chains are poorer substrates for ribosomal incorporation into the nascent peptide chain, mainly owing to the lower affinity of their aminoacyl-tRNA toward elongation factor-thermo unstable (EF-Tu). Phosphorylated Ser and Tyr are also poorer substrates for the same reason; engineering EF-Tu has turned out to be effective in improving their incorporation efficiencies. On the other hand, exotic amino acids such as d-amino acids and β-amino acids are even poorer substrates owing to their low affinity to EF-Tu and poor compatibility to the ribosome active site. Moreover, their consecutive incorporation is extremely difficult. To solve these problems, the engineering of ribosomes and tRNAs has been executed, leading to successful but limited improvement of their incorporation efficiency. In this review, we comprehensively summarize recent attempts to engineer the translation systems, resulting in a significant improvement of the incorporation of exotic amino acids.


2016 ◽  
Vol 6 (3) ◽  
pp. 535-544 ◽  
Author(s):  
Zhenling Cui ◽  
Sergey Mureev ◽  
Mark E. Polinkovsky ◽  
Zakir Tnimov ◽  
Zhong Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document