scholarly journals Superoxide Generation in Extracts from Isolated Plant Cell Walls Is Regulated by Fungal Signal Molecules

1997 ◽  
Vol 87 (8) ◽  
pp. 846-852 ◽  
Author(s):  
Akinori Kiba ◽  
Chizu Miyake ◽  
Kazuhiro Toyoda ◽  
Yuki Ichinose ◽  
Tetsuji Yamada ◽  
...  

Fractions solubilized with NaCl from cell walls of pea and cowpea plants catalyzed the formation of blue formazan from nitroblue tetrazolium. Because superoxide dismutase decreased formazan production by over 90%, superoxide anion (O2¯) may participate in the formation of formazan in the solubilized cell wall fractions. The formazan formation in the fractions solubilized from pea and cowpea cell walls was markedly reduced by exclusion of NAD(P)H, manganese ion, or p-coumaric acid from the reaction mixture. The formazan formation was severely inhibited by salicylhydroxamic acid and catalase, but not by imidazole, pyridine, quinacrine, and diphenyleneiodonium. An elicitor preparation from the pea pathogen Mycosphaerella pinodes enhanced the activities of formazan formation nonspecifically in both pea and cowpea fractions. The suppressor preparation from M. pinodes inhibited the activity in the pea fraction in the presence or absence of the elicitor. In the cowpea fraction, however, the suppressor did not inhibit the elicitor-enhanced activity, and the suppressor alone stimulated formazan formation. These results indicated that O2¯ generation in the fractions solubilized from pea and cowpea cell walls seems to be catalyzed by cell wall-bound peroxidase(s) and that the plant cell walls alone are able to respond to the elicitor non-specifically and to the suppressor in a species-specific manner, suggesting the plant cell walls may play an important role in determination of plant-fungal pathogen specificity.

2002 ◽  
Vol 68 (4) ◽  
pp. 1610-1615 ◽  
Author(s):  
Koichiro Murashima ◽  
Akihiko Kosugi ◽  
Roy H. Doi

ABSTRACT Clostridium cellulovorans produces a cellulase enzyme complex (cellulosome). In this study, we isolated two plant cell wall-degrading cellulosomal fractions from culture supernatant of C. cellulovorans and determined their subunit compositions and enzymatic activities. One of the cellulosomal fractions showed fourfold-higher plant cell wall-degrading activity than the other. Both cellulosomal fractions contained the same nine subunits (the scaffolding protein CbpA, endoglucanases EngE and EngK, cellobiohydrolase ExgS, xylanase XynA, mannanase ManA, and three unknown proteins), although the relative amounts of the subunits differed. Since only cellobiose was released from plant cell walls by the cellulosomal fractions, cellobiohydrolases were considered to be key enzymes for plant cell wall degradation.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


2020 ◽  
Author(s):  
Huimin Xu ◽  
Yuanyuan Zhao ◽  
Yuanzhen Suo ◽  
Yayu Guo ◽  
Yi Man ◽  
...  

Abstract Background: Cell wall imaging can considerably permit direct visualization of the molecular architecture of cell walls and provide the detailed chemical information on wall polymers, which is imperative to better exploit and use the biomass polymers; however, detailed imaging and quantifying of the native composition and architecture in the cell wall remains challenging.Results: Here, we describe a label-free imaging technology, coherent Raman scattering microscopy (CRS), including coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy, which images the major structures and chemical composition of plant cell walls. The major steps of the procedure are demonstrated, including sample preparation, setting the mapping parameters, analysis of spectral data, and image generation. Applying this rapid approach, which will help researchers understand the highly heterogeneous structures and organization of plant cell walls.Conclusions: This method can potentially be incorporated into label-free microanalyses of plant cell wall chemical composition based on the in situ vibrations of molecules.


Author(s):  
WILLIAM S. YORK ◽  
ALAN G. DARVILL ◽  
MICHAEL MCNEIL ◽  
THOMAS T. STEVENSON ◽  
PETER ALBERSHEIM

Author(s):  
William S. York ◽  
Alan G. Darvill ◽  
Michael McNeil ◽  
Thomas T. Stevenson ◽  
Peter Albersheim

2019 ◽  
Vol 20 (12) ◽  
pp. 2946 ◽  
Author(s):  
Xiao Han ◽  
Li-Jun Huang ◽  
Dan Feng ◽  
Wenhan Jiang ◽  
Wenzhuo Miu ◽  
...  

Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.


1994 ◽  
Vol 64 (1) ◽  
pp. 63-65 ◽  
Author(s):  
Gordon J Provan ◽  
Lorraine Scobbie ◽  
Andrew Chesson

Sign in / Sign up

Export Citation Format

Share Document