scholarly journals Isolation and characterization of Bacillus velezensis EB14, an endophytic bacterial strain antagonistic to poplar stem canker pathogen Sphaerulina musiva and its interactions with the endophytic fungal microbiome in poplars.

Author(s):  
Sachin Naik ◽  
Sylvester Palys ◽  
Marcos Di Falco ◽  
Adrian Tsang ◽  
Pierre Périnet ◽  
...  

Species of the genus Populus commonly known as poplars are one of the most widely used groups of forest trees in North America and Europe, and play a significant ecological role as a pioneer species in boreal forests, and as a dominant species in the riparian forests that serve as wildlife habitats and watersheds. Natural and artificial hybrids of poplars are being extensively used in commercial plantations. However, many hybrid poplar trees are susceptible to Sphaerulina musiva, the pathogenic fungus that causes leaf spots and stem cankers and limits the utility of hybrid poplars as a plantation trees. We isolated an endophytic bacterial strain Bacillus velezensis EB14 from a Populus hybrid which showed a strong antifungal activity against S. musiva. Through mass spectrometric analyses of co-cultured B. velezensis EB14 and S. musiva, we identified five cyclic lipopeptides produced by B. velezensis EB14 – Iturin A1, Iturin A2, Iturin A9, Subtulene A and Fengycin. In addition, B. velezensis EB14 produced four major unidentified compounds in co-cultivation with S. musiva. The cyclopeptide production by B. velezensis EB14 was more pronounced (20-1000 fold) in the co-cultured plates due to elicitation by S. musiva. We also discovered that the native endophytic B. velezensis EB14 strain exhibited different levels of interactions against the endophytic fungal microbiomes of Populus sp. Overall, our results indicate B. velezensis EB14 strain as a promising biocontrol agent that could be used against stem canker and leaf spot diseases caused by S. musiva in Poplar plantations.

2020 ◽  
Author(s):  
Sachin Naik ◽  
Adrian Tsang ◽  
Uma Shaanker Ramanan ◽  
Selvadurai Dayanandan

Bacillus velezensis EB14, isolated from a leaf of Populus  jackii, possesses antagonistic activity against Sphaerulina musiva, a fungal pathogen of Populus sp. that causes leaf spots and stem cankers on Poplars limiting the utility of hybrid poplars as plantation trees. We sequenced the genome of B. velezensis EB14 to gain insights into the underlying basis of its antagonistic activity. Here, we report the complete genome sequence of B. velezensis EB14, a gram-positive bacterium of the family Bacillaceae. Through antiSMASH analysis, we predicted several gene clusters coding for the biosynthesis of antimicrobial compounds, and several genes involved in plant bacterial interactions. These findings support the potential of developing B. velezensis EB14 as a biocontrol agent against S. musiva in poplar plantations. The genome of B. velezensis EB14 along with genome sequences of closely related B. velezensis species are invaluable for comparative genomic analyses to gain insights into bacterial, fungal and host plant interactions.


1991 ◽  
Vol 67 (4) ◽  
pp. 411-416 ◽  
Author(s):  
Marie-Josée Mottet ◽  
Gilles Vallée ◽  
Guy Bussières

Septoria musiva, a fungal pathogen that causes cankers and leaf spots, is found in hybrid poplar plantations (Populus spp.) in southern Québec. A high incidence of severe cankers is observed on susceptible poplars. To accelerate the evaluation for resistance to Septoria canker, sprouts were inoculated with S. musiva twice in the nursery. From the 725 clones tested, 100 showed a low degree of susceptibility. Among these, 45 belong to the Ageiros section, 13 to the Tacamahaca section and 42 are hybrids between the two sections. The four isolates used in this test demonstrate variations in aggressiveness. Key words: Septoria musiva, Septoria canker, screening for resistance, hybrid poplars.


2001 ◽  
Vol 3 (1) ◽  
pp. 87-104 ◽  
Author(s):  
A. Ferro ◽  
J. Chard ◽  
R. Kjelgren ◽  
B. Chard ◽  
D. Turner ◽  
...  
Keyword(s):  

2010 ◽  
Vol 9 (8) ◽  
pp. 1173-1179 ◽  
Author(s):  
Ahmed Sarfraz ◽  
Ahmed Safia ◽  
Farrukh Nisar Muhammad ◽  
Hussain Khalid ◽  
Majeed Abdul ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ping Zhang ◽  
Jian Diao ◽  
Guangqiang Xie ◽  
Ling Ma ◽  
Lihai Wang

An endophytic bacterium Bacillus velezensis BY6 was isolated from the wood stems of healthy Populus davidiana × P. alba var. pyramidalis (PdPap). The BY6 strain can inhibit pathogenic fungus Alternaria alternate in PdPap and promote growth of PdPap seedlings. In the present study, we used the Pacific Biosciences long-read sequencing platform, a single-molecule real-time (SMRT) technology for strain BY6, to perform complete genome sequencing. The genome size was 3,898,273 bp, the number of genes was 4,045, and the average GC content was 47.33%. A complete genome of strain BY6 contained 110 secondary metabolite gene clusters. Nine of the secondary metabolite gene clusters exhibited antifungal activity and promoted growth functions primarily involved in the synthesis of surfactin, bacteriocins, accumulated iron ions, and related antibiotics. Gene clusters provide genetic resources for biotechnology and genetic engineering, and enhance understanding of the relationship between microorganisms and plants.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1815
Author(s):  
Kazuhiro Hamaoka ◽  
Yoshinao Aoki ◽  
Shunji Suzuki

As the use of chemical fungicides has raised environmental concerns, biological control agents have attracted interest as an alternative to chemical fungicides for plant-disease control. In this study, we attempted to explore biological control agents for three fungal phytopathogens causing downy mildew, gray mold, and ripe rot in grapevines, which are derived from shoot xylem of grapevines. KOF112, which was isolated from the Japanese indigenous wine grape Vitis sp. cv. Koshu, inhibited mycelial growth of Botrytis cinerea, Colletotrichum gloeosporioides, and Phytophthora infestans. The KOF112-inhibited mycelial tips were swollen or ruptured, suggesting that KOF112 produces antifungal substances. Analysis of the 16S rDNA sequence revealed that KOF112 is a strain of Bacillus velezensis. Comparative genome analysis indicated significant differences in the synthesis of non-ribosomal synthesized antimicrobial peptides and polyketides between KOF112 and the antagonistic B. velezensis FZB42. KOF112 showed biocontrol activities against gray mold caused by B. cinerea, anthracnose by C. gloeosporioides, and downy mildew by Plasmopara viticola. In the KOF112–P. viticola interaction, KOF112 inhibited zoospore release from P. viticola zoosporangia but not zoospore germination. In addition, KOF112 drastically upregulated the expression of genes encoding class IV chitinase and β-1,3-glucanase in grape leaves, suggesting that KOF112 also works as a biotic elicitor in grapevine. Because it is considered that endophytic KOF112 can colonize well in and/or on grapevine, KOF112 may contribute to pest-management strategies in viticulture and potentially reduce the frequency of chemical fungicide application.


2007 ◽  
Vol 85 (11) ◽  
pp. 1071-1081 ◽  
Author(s):  
Edward J. Harrison ◽  
Michael Bush ◽  
Jonathan M. Plett ◽  
Daniel P. McPhee ◽  
Robin Vitez ◽  
...  

We have produced the largest population of activation-tagged poplar trees to date, approximately 1800 independent lines, and report on phenotypes of interest that have been identified in tissue culture and greenhouse conditions. Activation tagging is an insertional mutagenesis technique that results in the dominant upregulation of an endogenous gene. A large-scale Agrobacterium -mediated transformation protocol was used to transform the pSKI074 activation-tagging vector into Populus tremula × Populus alba hybrid poplar. We have screened the first 1000 lines for developmental abnormalities and have a visible mutant frequency of 2.4%, with alterations in leaf and stem structure as well as overall stature. Most of the phenotypes represent new phenotypes that have not previously been identified in poplar and, in some cases, not in any other plant either. Molecular analysis of the T-DNA inserts of a subpopulation of mutant lines reveal both single and double T-DNA inserts with double inserts more common in lines with visible phenotypes. The broad range of developmental mutants identified in this pilot screen of the population reveals that it will be a valuable resource for gene discovery in poplar. The full value of this population will only be realized as we screen these lines for a wide range of phenotypes.


Sign in / Sign up

Export Citation Format

Share Document