scholarly journals Developmental Expression and Localization of the Prolactin Receptor (PRL-R) Gene in Ewe Mammary Gland during Pregnancy and Lactation: Estimation of the Ratio of the Two Forms of PRL-R Messenger Ribonucleic Acid1

1998 ◽  
Vol 58 (5) ◽  
pp. 1290-1296 ◽  
Author(s):  
Sandrine Cassy ◽  
Madia Charlier ◽  
Lucette Bélair ◽  
Michel Guillomot ◽  
Gisèle Charron ◽  
...  
2002 ◽  
Vol 69 (1) ◽  
pp. 13-26 ◽  
Author(s):  
AURORE RINCHEV-ALARNOLD ◽  
LUCETTE BELAIR ◽  
JEAN DJIANE

Secretory IgA found in external secretions are constituted by polymeric IgA (pIgA) bound to the extra-cellular part of the polymeric immunoglobulin receptor (pIgR). The receptor mediates transcytosis of pIgA across epithelial cells. The aim of the present study was to analyse the evolution of pIgR expression in the sheep mammary gland during the development of the mammary gland and to analyse its hormonal regulation. Gene expression of the pIgR was analysed in sheep mammary gland during pregnancy and lactation. By Northern Blot analysis, we observed that low levels of pIgR mRNA are expressed until day 70 of pregnancy. Accumulation of pIgR mRNA started during the third part of pregnancy and intensified 3 d after parturition to reach highest levels during established lactation (day 70). In situ hybridization analysis was used to confirm the increase in pIgR gene expression per mammary epithelial cell. In order to examine the hormonal regulation of the pIgR expression, virgin ewes were hormonally treated. Treatment with oestradiol and progesterone increased pIgR mRNA levels slightly. Subsequent addition of glucocorticoids induced a significant accumulation of pIgR mRNA in the mammary gland of the treated animals. Immunohistochemical analysis was performed to verify that the increase of pIgR mRNA level was associated with enhancement of the pIgR protein in mammary cells. No increase of pIgR mRNA levels were observed if PRL secretion was blocked by bromocryptine injections throughout the hormonal procedure. In conclusion, the present experiments suggest that the enhancement of pIgR levels during lactation result from combined effects of both prolactin and glucocorticoids.


1993 ◽  
Vol 139 (1) ◽  
pp. 37-49 ◽  
Author(s):  
J. J. Smith ◽  
A. V. Capuco ◽  
I. H. Mather ◽  
B. K. Vonderhaar

ABSTRACT Developmental variation in the expression of the prolactin receptor in the ruminant mammary gland was investigated. Affinity chromatography revealed that bovine prolactin and human GH each bound to the same mammary gland proteins, yielding fractions enriched in binding activity and a protein of Mr 36 000, assumed to be a bovine prolactin receptor. Affinity cross-linking of 125I-labelled human GH to mammary microsomes confirmed that the Mr 36 000 protein was a bovine prolactin receptor. Binding assays of receptors in microsomes from the mammary tissue of cows and ewes at various stages of the lactational/reproductive cycle indicated developmental regulation of receptor concentration, but not receptor type, as no other bovine prolactin receptor type was detected by affinity cross-linking. These results suggest that differences in the response to prolactin in the mammary gland at various developmental stages in ruminants are not due to the expression of different forms of the prolactin receptor, and the lack of a prolactin effect on established lactation in ruminants is not due to the absence of the Mr 36 000 form of the prolactin receptor. Journal of Endocrinology (1993) 139, 37–49


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Malgorzata Szczesna ◽  
Katarzyna Kirsz ◽  
Michal Nowakowski ◽  
Dorota A. Zieba

AbstractThis study aimed to expand the knowledge of the interactions between prolactin (PRL) and leptin in the ovine mammary gland during pregnancy and lactation; we examined the mRNA expression of prolactin receptor (PRLR), the long form of the leptin receptor (LRb) and suppressor of cytokine signaling (SOCS)-3 in mammary gland biopsies collected on days 60, 90 and 120 of pregnancy and on days 30, 60 and 90 of lactation (n = 6 for each time point), along with the plasma PRL and leptin concentrations. The PRL concentrations were stable throughout pregnancy and increased during lactation. The plasma leptin concentrations were comparable among nonpregnant, early-pregnant, late-pregnant and lactating ewes, but this metric peaked during mid-pregnancy. Expression of PRLR and SOCS-3 in the mammary gland fluctuated during the transition from pregnancy to lactation, and differences in LRb expression occurred during the late stages of lactation. The LRb transcript abundance was approximately 31 times higher in ewes on day 60 of lactation than in early-lactating ewes. Expression of SOCS-3 mRNA in biopsies gradually decreased over the course of pregnancy and reached a minimum value during late pregnancy. After lambing, the transcript level of SOCS-3 increased and peaked on day 60 of lactation. During pregnancy, the plasma PRL concentration positively correlated with the abundances of PRLR (r = 0.971, P < 0.01) and SOCS-3 (r = 0.818, P < 0.05). Positive correlations were also observed between the transcript abundances of SOCS-3 and LRb (r = 0.854, P < 0.05). The variations observed in the plasma PRL and leptin concentrations and the changes in expression of key leptin and PRL signal transduction pathway components, such as PRLR, LRb and SOCS-3, indicate that the efficacies of both hormone actions are modulated in a multilevel manner throughout pregnancy and lactation. These interactions may regulate the ability of the mammary gland to respond to current energy requirements and challenges, thus affecting milk yield and lactation duration.


1982 ◽  
Vol 208 (3) ◽  
pp. 611-618 ◽  
Author(s):  
M R Grigor ◽  
A Geursen ◽  
M J Sneyd ◽  
S M Warren

1. The rate of mammary-gland lipogenesis measured in vivo from 3H2O was suppressed after decreasing the milk demand by decreasing the number of pups from ten to two or three, as well as by giving diets containing lipid [Grigor & Warren (1980) Biochem. J. 188, 61-65]. 2. The specific activities of the lipogenic enzymes fatty acid synthase, glucose 6-phosphate dehydrogenase and ‘malic’ enzyme increased between 6- and 10-fold in the mammary gland and between 2- and 3-fold in the livers during the first 10 days of lactation. The increases in specific activity coupled with the doubling of liver mass which occurred during pregnancy and lactation resulted in considerable differences in total liver activities when compared with virgin animals. 3. Although consumption of a diet containing 20% peanut oil suppressed the activities of the three lipogenic enzymes in the livers, only the ‘malic’ enzyme was affected in the mammary glands. 4. In contrast, decreased milk demand did not affect the specific activities of any of the liver enzymes, whereas it resulted in suppression of all three lipogenic enzymes of the mammary glands. There was no effect on either the cytoplasmic malate dehydrogenase or the lactate dehydrogenase of the mammary gland. 5. In all the experiments performed, the activity of the fatty acid synthase correlated with the amount of material precipitated by the rabbit antibody raised against rat fatty acid synthase.


Sign in / Sign up

Export Citation Format

Share Document