scholarly journals Calcium Dependence of Transglutaminase and its Function in Apoptosis in Human Erythroleukemia Cell Lines

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Warren J Lowther ◽  
Paul J Birckbichler
2005 ◽  
Vol 16 (6) ◽  
pp. 635-643 ◽  
Author(s):  
Sybille Wittich ◽  
Hans Scherf ◽  
Changping Xie ◽  
Birgit Heltweg ◽  
Franck Dequiedt ◽  
...  

Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.


Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

Abstract To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.


1985 ◽  
Vol 35 (6) ◽  
pp. 743-747
Author(s):  
P. G. Parsons ◽  
D. J. Moss ◽  
C. Morris ◽  
P. Musk ◽  
K. Maynard ◽  
...  

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2577-2582 ◽  
Author(s):  
HL Atkins ◽  
VC Broudy ◽  
T Papayannopoulou

Abstract Erythropoietin (Epo) regulates the growth and differentiation of erythroid cells by binding to a specific receptor. We characterized the native Epo receptor on erythroleukemia cell lines by ligand blotting. Solubilized cell membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred onto nitrocellulose, and probed with 125I-Epo. Specificity was demonstrated by inhibition of 125I-Epo binding by unlabeled excess Epo but not other peptide growth factors and by the cellular distribution of the Epo binding protein. A single membrane protein of 61 Kd +/- 4 Kd was sufficient to bind 125I Epo in both human (OCIM2, K562) and murine (GM979, Rauscher, DA-1) cell lines. This finding is consistent with the predicted size of the Epo receptor from the murine cDNA clone. However, chemical crosslinking of 125I-Epo to its receptor has identified two Epo binding proteins of 105 Kd and 85 Kd. This difference may occur because the receptor is size fractionated before Epo binding in the ligand blot, but after Epo binding in crosslinking studies. Ligand blotting demonstrates that the native Epo receptor is composed of a single 61-Kd Epo binding protein, and suggests the presence of additional proteins of 20 to 25 Kd that associate with the receptor after Epo binding.


Sign in / Sign up

Export Citation Format

Share Document