The Close Relationship between DNA Replication and the Selection of Differentiation Lineages of Human Erythroleukemia Cell Lines K562, HEL, and TF1 into Either Erythroid or Megakaryocytic Lineages

1993 ◽  
Vol 208 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Takashi Murate ◽  
Shinsuke Saga ◽  
Tomomitsu Hotta ◽  
Haruhiko Asano ◽  
Tatsuya Ito ◽  
...  
2011 ◽  
Vol 113 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Manuel S. Valenzuela ◽  
Lan Hu ◽  
John Lueders ◽  
Robert Walker ◽  
Paul S. Meltzer

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Richard G. Federley ◽  
Louis J. Romano

DNA replication is vital for an organism to proliferate and lying at the heart of this process is the enzyme DNA polymerase. Most DNA polymerases have a similar three dimensional fold, akin to a human right hand, despite differences in sequence homology. This structural homology would predict a relatively unvarying mechanism for DNA synthesis yet various polymerases exhibit markedly different properties on similar substrates, indicative of each type of polymerase being prescribed to a specific role in DNA replication. Several key conformational steps, discrete states, and structural moieties have been identified that contribute to the array of properties the polymerases exhibit. The ability of carcinogenic adducts to interfere with conformational processes by directly interacting with the protein explicates the mutagenic consequences these adducts impose. Recent studies have identified novel states that have been hypothesised to test the fit of the nascent base pair, and have also shown the enzyme to possess a lively quality by continually sampling various conformations. This review focuses on the homologous structural changes that take place in various DNA polymerases, both replicative and those involved in adduct bypass, the role these changes play in selection of a correct substrate, and how the presence of bulky carcinogenic adducts affects these changes.


2005 ◽  
Vol 16 (6) ◽  
pp. 635-643 ◽  
Author(s):  
Sybille Wittich ◽  
Hans Scherf ◽  
Changping Xie ◽  
Birgit Heltweg ◽  
Franck Dequiedt ◽  
...  

1999 ◽  
Vol 24 (1) ◽  
pp. 13-16 ◽  
Author(s):  
Mamoru HORIKOSHI ◽  
Takashi HIROOKA
Keyword(s):  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5203 ◽  
Author(s):  
Mohammad Faujul Kabir ◽  
Johari Mohd Ali ◽  
Onn Haji Hashim

BackgroundWe have previously reported anticancer activities ofMelicope ptelefolia(MP) leaf extracts on four different cancer cell lines. However, the underlying mechanisms of actions have yet to be deciphered. In the present study, the anticancer activity of MP hexane extract (MP-HX) on colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines was characterized through microarray gene expression profiling.MethodsHCT116 and HepG2 cells were treated with MP-HX for 24 hr. Total RNA was extracted from the cells and used for transcriptome profiling using Applied Biosystem GeneChip™ Human Gene 2.0 ST Array. Gene expression data was analysed using an Applied Biosystems Expression Console and Transcriptome Analysis Console software. Pathway enrichment analyses was performed using Ingenuity Pathway Analysis (IPA) software. The microarray data was validated by profiling the expression of 17 genes through quantitative reverse transcription PCR (RT-qPCR).ResultsMP-HX induced differential expression of 1,290 and 1,325 genes in HCT116 and HepG2 cells, respectively (microarray data fold change, MA_FC ≥ ±2.0). The direction of gene expression change for the 17 genes assayed through RT-qPCR agree with the microarray data. In both cell lines, MP-HX modulated the expression of many genes in directions that support antiproliferative activity. IPA software analyses revealed MP-HX modulated canonical pathways, networks and biological processes that are associated with cell cycle, DNA replication, cellular growth and cell proliferation. In both cell lines, upregulation of genes which promote apoptosis, cell cycle arrest and growth inhibition were observed, while genes that are typically overexpressed in diverse human cancers or those that promoted cell cycle progression, DNA replication and cellular proliferation were downregulated. Some of the genes upregulated by MP-HX include pro-apoptotic genes (DDIT3, BBC3, JUN), cell cycle arresting (CDKN1A, CDKN2B), growth arrest/repair (TP53, GADD45A) and metastasis suppression (NDRG1). MP-HX downregulated the expression of genes that could promote anti-apoptotic effect, cell cycle progression, tumor development and progression, which include BIRC5, CCNA2, CCNB1, CCNB2, CCNE2, CDK1/2/6, GINS2, HELLS, MCM2/10 PLK1, RRM2 and SKP2. It is interesting to note that all six top-ranked genes proposed to be cancer-associated (PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2) were downregulated by MP-HX in both cell lines.DiscussionThe present study showed that the anticancer activities of MP-HX are exerted through its actions on genes regulating apoptosis, cell proliferation, DNA replication and cell cycle progression. These findings further project the potential use of MP as a nutraceutical agent for cancer therapeutics.


Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.


2020 ◽  
Vol 295 (50) ◽  
pp. 16949-16959
Author(s):  
Etsuko Shibata ◽  
Anindya Dutta

The origin recognition complex (ORC), composed of six subunits, ORC1–6, binds to origins of replication as a ring-shaped heterohexameric ATPase that is believed to be essential to recruit and load MCM2–7, the minichromosome maintenance protein complex, around DNA and initiate DNA replication. We previously reported the creation of viable cancer cell lines that lacked detectable ORC1 or ORC2 protein without a reduction in the number of origins firing. Here, using CRISPR-Cas9–mediated mutations, we report that human HCT116 colon cancer cells also survive when ORC5 protein expression is abolished via a mutation in the initiator ATG of the ORC5 gene. Even if an internal methionine is used to produce an undetectable, N terminally deleted ORC5, the protein would lack 80% of the AAA+ ATPase domain, including the Walker A motif. The ORC5-depleted cells show normal chromatin binding of MCM2–7 and initiate replication from a similar number of origins as WT cells. In addition, we introduced a second mutation in ORC2 in the ORC5 mutant cells, rendering both ORC5 and ORC2 proteins undetectable in the same cells and destabilizing the ORC1, ORC3, and ORC4 proteins. Yet the double mutant cells grow, recruit MCM2–7 normally to chromatin, and initiate DNA replication with normal number of origins. Thus, in these selected cancer cells, either a crippled ORC lacking ORC2 and ORC5 and present at minimal levels on the chromatin can recruit and load enough MCM2–7 to initiate DNA replication, or human cell lines can sometimes recruit MCM2–7 to origins independent of ORC.


2014 ◽  
Vol 13 (2) ◽  
pp. 251-261 ◽  
Author(s):  
Dmitry A. Ovchinnikov ◽  
Drew M. Titmarsh ◽  
Patrick R.J. Fortuna ◽  
Alejandro Hidalgo ◽  
Samah Alharbi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document