Non-coding transcripts far upstream of the ε-globin gene are distinctly expressed in human primary tissues and erythroleukemia cell lines

2006 ◽  
Vol 344 (2) ◽  
pp. 623-630 ◽  
Author(s):  
Ping Xiang ◽  
Xiangdong Fang ◽  
Wenxuan Yin ◽  
Grainne Barkess ◽  
Qiliang Li
1988 ◽  
Vol 8 (11) ◽  
pp. 4958-4965
Author(s):  
V Dhar ◽  
D Mager ◽  
A Iqbal ◽  
C L Schildkraut

The temporal order of replication of DNA sequences in the chromosomal domain containing the human beta-globin gene cluster and its flanking sequences (140 kilobases) was measured and compared in two different human cell lines. In human erythroleukemia (K562) cells, in which embryonic and fetal globin genes are transcribed, all of the sequences we examined from the beta-globin domain replicated early during S phase, while in HeLa cells, in which globin genes are transcriptionally silent, these sequences replicated late during S. Potential sites of initiation of DNA replication within this domain were identified. The beta-globin gene domain was also found to differ with respect to the nuclease sensitivity of the chromatin in these two cell lines. In K562 cells, hypersensitive sites for endogenous nucleases and DNase I were present in the chromatin near the earliest-replicating segments in the beta-globin domain.


2005 ◽  
Vol 16 (6) ◽  
pp. 635-643 ◽  
Author(s):  
Sybille Wittich ◽  
Hans Scherf ◽  
Changping Xie ◽  
Birgit Heltweg ◽  
Franck Dequiedt ◽  
...  

Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.


1987 ◽  
Vol 7 (8) ◽  
pp. 2999-3003 ◽  
Author(s):  
C J Stoeckert ◽  
J E Metherall ◽  
M Yamakawa ◽  
J M Eisenstadt ◽  
S M Weissman ◽  
...  

The overexpressed A gamma globin gene in the Greek type of nondeletion hereditary persistence of fetal hemoglobin has a unique single-base substitution located at position -117 relative to the site of transcription initiation. This gene and its normal counterpart were transferred into cultured cell lines by using a retroviral vector. The only difference in expression between the transferred normal and mutant gamma genes was observed in the human erythroleukemia cell line KMOE after exposure of the cells to cytosine arabinoside, a condition that resulted in an adult pattern of endogenous globin gene expression by the cells and was associated with increased expression of the mutant gene.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 705-712 ◽  
Author(s):  
NP Anagnou ◽  
TY Yuan ◽  
E Lim ◽  
J Helder ◽  
S Wieder ◽  
...  

Abstract In order to test if trans-acting regulatory factors specific for globin genes of the adult and embryonic stages of development exist in erythroid cells, transcriptionally active embryonic and adult globin genes on the same chromosome were transferred by cell fusion from the human leukemia cell K562 into phenotypically adult mouse erythroleukemia cells. Restriction-fragment-length polymorphisms of the K562 zeta (embryonic) globin genes were used to establish that all three copies of human chromosome 16 present in the K562 cell showed the same pattern of human globin gene expression after transfer to the mouse erythroleukemia cell. Adult (alpha) but not embryonic (zeta) human globin mRNA was detected in all nine of the independently derived mouse erythroleukemia hybrid cells, each of which contained human chromosome 16. Restriction endonuclease studies of the K562 alpha- and zeta-globin genes after transfer into the mouse erythroleukemia cell showed no evidence of rearrangements or deletions that could explain this loss of zeta-globin gene expression. These data suggest that regulation of globin gene expression in these erythroleukemia cells involves trans-acting regulatory factors specific for the adult and embryonic stages of development.


Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

Abstract To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3578-3584 ◽  
Author(s):  
Haruhiko Asano ◽  
Xi Susan Li ◽  
George Stamatoyannopoulos

Abstract FKLF-2, a novel Krüppel-type zinc finger protein, was cloned from murine yolk sac. The deduced polypeptide sequence of 289 amino acids has 3 contiguous zinc fingers at the near carboxyl-terminal end, an amino-terminal domain characterized by its high content of alanine and proline residues and a carboxyl-terminal domain rich in serine residues. By Northern blot hybridization, the human homologue of FKLF-2 is expressed in the bone marrow and striated muscles and not in 12 other human tissues analyzed. FKLF-2 is constitutively expressed in established cell lines with an erythroid phenotype, but it is inconsistently expressed in cell lines with myeloid or lymphoid phenotypes. The expression of FKLF-2 messenger RNA (mRNA) is up-regulated after induction of mouse erythroleukemia cells. In luciferase assays, FKLF-2 activates predominantly the γ, and to a lesser degree, the ɛ and β globin gene promoters. The activation of γ gene promoter does not depend on the presence of an HS2 enhancer. FKLF-2 activates the γ promoter predominantly by interacting with the γ CACCC box, and to a lesser degree through interaction with the TATA box or its surrounding DNA sequences. FKLF-2 also activated all the other erythroid specific promoters we tested (GATA-1, glycophorin B, ferrochelatase, porphobilinogen deaminase, and 5-aminolevulinate synthase). These results suggest that in addition to globin, FKLF-2 may be involved in activation of transcription of a wide range of genes in the cells of the erythroid lineage.


1989 ◽  
Vol 9 (1) ◽  
pp. 241-251 ◽  
Author(s):  
E Whitelaw ◽  
P Hogben ◽  
O Hanscombe ◽  
N J Proudfoot

The human alpha-globin gene displays the unusual property of transcriptional promiscuity: that is, it functions in the absence of an enhancer when transfected into nonerythroid cell lines. It is also unusual in that its promoter region lies in a hypomethylated HpaII tiny fragment (HTF) island containing multiple copies of the consensus sequence for the SP1-binding site. We have investigated whether there is a relationship between these two observations. First, we investigated the mouse alpha-globin gene since it does not lie in an HTF island. We have demonstrated that it was not transcriptionally promiscuous. Second, we studied the transcriptional activity of the human alpha-globin gene in the absence of the GC-rich region containing putative SP1-binding sites and found a small (two- to threefold) but consistent positive effect of this region on transcriptional activity in both nonerythroid and erythroid cell lines. However, this effect did not account for the promiscuous nature of the human alpha-globin gene. We found that in a nonreplicating system, the human alpha-globin gene, like that of the mouse, required a simian virus 40 enhancer in order to be transcriptionally active in nonerythroid and erythroid cell lines. Since we only observed enhancer independence of the human alpha-globin gene in a high-copy-number replicating system, we suggest that competition for trans-acting factors could explain these results. Finally, our experiments with the erythroid cell line Putko suggest that there are no tissue-specific enhancers within 1 kilobase 5' of the human alpha-globin cap site or within the gene itself.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3637-3637
Author(s):  
Paolo Moi ◽  
Loredana Porcu ◽  
Maria G. Marini ◽  
Isadora Asunis ◽  
Maria G. Loi ◽  
...  

Abstract The globin CACCC boxes are absolutely required for the appropriate regulation of the β-like globin genes. While the β-globin CACCC box binds EKLF/KLF1, a likely adult switching factor, analogous factors, interacting with the γ-globin gene and predicted to regulate the fetal stage of hemoglobin switching, have so far been elusive. By using yeast one hybrid assay, we have isolated four KLFs, KLF1, 2, 4, and 6, that bound the γ-CACCC bait. To establish their role in globin regulation and in the switching of hemoglobins, these factors were compared to four other KLFs already established or putative globin regulators, KLF3, 11, 13 and 16, mainly evaluating their ability to bind and transactivate the ε-, γ- and β-globin gene. γ-CACCC binding at variable intensities was confirmed in band shift assay for all four isolated KLFs, for KLF3 and, faintly, for KLF13. The ε- and β-CACCC were bound by the same factors with similar affinities with the exception of KLF3 and KLF13 that bound stronger to the β- and ε- than to the γ-CACCC box. On the other hand, KLF11 and 16 did not produce any specific complex in band shift assays with anyone of the globin CACCC boxes. More relevant differences were observed among the factors in the transactivation of single and dual luciferase reporters in both K562 and MEL cells. In these assays, most factors presented peculiar modulatory properties and specific promoter tropism. Several factors presented bidirectional activity displaying in the same time the capacity to stimulate and repress different globin promoters. KLF1 and 4 were the strongest stimulators of the β-globin promoter in both cell lines, whereas KLF2 activated the β-promoter only in K562 cells. KLF1 and especially KLF4 consistently repressed ε-globin expression especially in MEL cells. KLF3 behaved always as a general globin repressor in MEL cells, but acted as a weak stimulator of the γ- and ε-promoter in K562 cells. KLF4 was the strongest inhibitor of the ε-globin gene. KLF13 significantly stimulated the γ-promoter in both cell lines, whereas KLF3, 4 and 6 showed statistically significant stimulation only in MEL cells. By RT-PCR analysis we found that KLFs were highly variable in their tissue expression and that KLF1, 3 and 13 had the highest expression in erythroid tissues. Thus the level of tissue expression should ultimately determine which factors are really active in physiological conditions. Taken together our binding and expression studies suggest that several KLFs have the potential to modulate the activity of the globin genes and that the resulting globin expression will depend on the vectorial sum of the relative activities of the factors expressed at any given time of development. Furthermore, as some KLFs, like KLF1 and 4, exert opposite effects on fetal and adult globin genes, their role in hemoglobin switching may be direct and not only dependent on their ability to mediate promoter competition for the LCR.


Sign in / Sign up

Export Citation Format

Share Document