scholarly journals The Effect of Diet on Aquaporin Abundance and Localization in the Female and Male Disease Vector Mosquito, Aedes aegypti

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Britney Picinic ◽  
Jean‐Paul Paluzzi ◽  
Andrew Donini
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Limb K. Hapairai ◽  
Keshava Mysore ◽  
Yingying Chen ◽  
Elizabeth I. Harper ◽  
Max P. Scheel ◽  
...  

2018 ◽  
Vol 108 ◽  
pp. 1-9 ◽  
Author(s):  
Susan M. Villarreal ◽  
Sylvie Pitcher ◽  
Michelle E.H. Helinski ◽  
Lynn Johnson ◽  
Mariana F. Wolfner ◽  
...  

2019 ◽  
Vol 29 (15) ◽  
pp. 2509-2516.e5 ◽  
Author(s):  
Clément Vinauger ◽  
Floris Van Breugel ◽  
Lauren T. Locke ◽  
Kennedy K.S. Tobin ◽  
Michael H. Dickinson ◽  
...  

2014 ◽  
Vol 217 (13) ◽  
pp. 2321-2330 ◽  
Author(s):  
C. Vinauger ◽  
E. K. Lutz ◽  
J. A. Riffell

2020 ◽  
Vol 21 (20) ◽  
pp. 7520
Author(s):  
Lucky R. Runtuwene ◽  
Shuichi Kawashima ◽  
Victor D. Pijoh ◽  
Josef S. B. Tuda ◽  
Kyoko Hayashida ◽  
...  

Efforts to determine the mosquito genes that affect dengue virus replication have identified a number of candidates that positively or negatively modify amplification in the invertebrate host. We used deep sequencing to compare the differential transcript abundances in Aedes aegypti 14 days post dengue infection to those of uninfected A. aegypti. The gene lethal(2)-essential-for-life [l(2)efl], which encodes a member of the heat shock 20 protein (HSP20) family, was upregulated following dengue virus type 2 (DENV-2) infection in vivo. The transcripts of this gene did not exhibit differential accumulation in mosquitoes exposed to insecticides or pollutants. The induction and overexpression of l(2)efl gene products using poly(I:C) resulted in decreased DENV-2 replication in the cell line. In contrast, the RNAi-mediated suppression of l(2)efl gene products resulted in enhanced DENV-2 replication, but this enhancement occurred only if multiple l(2)efl genes were suppressed. l(2)efl homologs induce the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the fruit fly Drosophila melanogaster, and we confirmed this finding in the cell line. However, the mechanism by which l(2)efl phosphorylates eIF2α remains unclear. We conclude that l(2)efl encodes a potential anti-dengue protein in the vector mosquito.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sunil Dhiman ◽  
Kavita Yadav ◽  
B. N. Acharya ◽  
Raj Kumar Ahirwar ◽  
D. Sukumaran

Abstract Background The direct toxicological impact of insecticides on vector mosquitoes has been well emphasized; however, behavioural responses such as excito-repellency and physical avoidance as a result of insecticide exposure have not been much studied. We have demonstrated the excito-repellency and behavioural avoidance in certain vector mosquito species on exposure to a slow-release insecticidal paint (SRIP) formulation in addition to direct toxicity. Methods A SRIP formulation developed by the Defence Research and Development Establishment, Gwalior, contains chlorpyriphos, deltamethrin and pyriproxyfen as active insecticides. Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquitoes were used to study the excito-repellency response of the formulation. The experiments were performed in a specially designed dual-choice exposure and escape chamber made of transparent polymethyl methacrylate. For the experiments, the SRIP formulation was applied undiluted at a rate of 8 m2 per kg on 15 cm2 metallic surfaces. Mosquitoes were introduced into the exposure chamber, and observations of the movement of mosquitoes into the escape chamber through the exit portal were taken at 1-min intervals for up to 30 min. Results The evaluated formulation displayed strong excito-repellency against all three tested vector mosquito species. Results showed that the ET50 (escape time 50%) for Ae. aegypti, An. stephensi and Cx. quinquefasciatus was 20.9 min, 14.5 min and 17.9 min for contact exposure (CE) respectively. Altogether in CE, the escape rates were stronger in An. stephensi mosquitoes at different time intervals compared to Ae. aegypti and Cx. quinquefasciatus mosquitoes. The probit analysis revealed that the determined ET did not deviate from linearity for both non-contact exposure (NCE) and placebo exposure (PE) (χ2 ≤ 7.9; p = 1.0) for Ae. aegypti mosquitoes and for NCE (χ2 = 8.3; p = 1.0) and PE (χ2 = 1.7; p = 1.0) treatments in Cx. quinquefasciatus. Mortality (24 h) was found to be statistically higher (F = 6.4; p = 0.02) in An. stephensi for CE but did not vary for NCE (p ≥ 0.3) and PE (p = 0.6) treatments among the tested mosquito species. Survival probability response suggested that all the three tested species displayed similar survival responses for similar exposures (χ2 ≤ 2.3; p ≥ 0.1). Conclusion The study demonstrates the toxicity and strong behavioural avoidance in known vector mosquito species on exposure to an insecticide-based paint formulation. The combination of insecticides in the present formulation will broaden the overall impact spectrum for protecting users from mosquito bites. The efficacy data generated in the study provide crucial information on the effectiveness of the tested formulation and could be useful in reducing the transmission intensity and disease risk in endemic countries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hannah J. MacLeod ◽  
George Dimopoulos ◽  
Sarah M. Short

The midgut microbiota of the yellow fever mosquito Aedes aegypti impacts pathogen susceptibility and transmission by this important vector species. However, factors influencing the composition and size of the microbiome in mosquitoes are poorly understood. We investigated the impact of larval diet abundance during development on the composition and size of the larval and adult microbiota by rearing Aedes aegypti under four larval food regimens, ranging from nutrient deprivation to nutrient excess. We assessed the persistent impacts of larval diet availability on the microbiota of the larval breeding water, larval mosquitoes, and adult mosquitoes under sugar and blood fed conditions using qPCR and high-throughput 16S amplicon sequencing to determine bacterial load and microbiota composition. Bacterial loads in breeding water increased with increasing larval diet. Larvae reared with the lowest diet abundance had significantly fewer bacteria than larvae from two higher diet treatments, but not from the highest diet abundance. Adults from the lowest diet abundance treatment had significantly fewer bacteria in their midguts compared to all higher diet abundance treatments. Larval diet amount also had a significant impact on microbiota composition, primarily within larval breeding water and larvae. Increasing diet correlated with increased relative levels of Enterobacteriaceae and Flavobacteriaceae and decreased relative levels of Sphingomonadaceae. Multiple individual OTUs were significantly impacted by diet including one mapping to the genus Cedecea, which increased with higher diet amounts. This was consistent across all sample types, including sugar fed and blood fed adults. Taken together, these data suggest that availability of diet during development can cause lasting shifts in the size and composition of the microbiota in the disease vector Aedes aegypti.


2020 ◽  
Vol 57 (6) ◽  
pp. 1983-1987
Author(s):  
Ross N Cuthbert ◽  
Tatenda Dalu ◽  
Ryan J Wasserman ◽  
Olaf L F Weyl ◽  
P William Froneman ◽  
...  

Abstract Predation is a critical factor that mediates population stability, community structure, and ecosystem function. Predatory natural enemies can contribute to the regulation of disease vector groups such as mosquitoes, particularly where they naturally co-occur across landscapes. However, we must understand inter-population variation in predatory efficiency if we are to enhance vector control. The present study thus employs a functional response (FR; resource use under different densities) approach to quantify and compare predatory interaction strengths among six populations of a predatory temporary pond specialist copepod, Lovenula raynerae, from the Eastern Cape of South Africa preying on second instar Culex pipiens complex mosquito larvae. All individuals from the sampled populations were predatory and drove significant mortality through per capita predation rates of 0.75–1.10 mosquitoes/h at maximum densities over a 5-h feeding time. Individuals from all copepod populations exhibited Type II FRs with no significant differences in attack rates. On the other hand, there were significant differences in handling times, and therefore also maximum feeding rates (maximum experimental prey density: 32), suggesting possible genetic differences among populations that influenced predation. Owing to a widespread distribution in arid landscapes, we propose that predatory calanoid copepods such as L. raynerae play a key regulatory role at the landscape scale in the control of disease vector mosquito populations. We propose that these ecosystems and their specialist biota should thus be conserved and enhanced (e.g., via selective breeding) owing to the ecosystem services they provide in the context of public health.


Sign in / Sign up

Export Citation Format

Share Document