scholarly journals A genome‐wide CRISPR interference screen using a novel reporter for endo‐lysosomal trafficking reveals a role for RME‐8 in opioid receptor regulation

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Braden Lobingier ◽  
Brandon Novy ◽  
Monica Maria ◽  
Nikoleta Tsvetanova ◽  
Mark Zastrow
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Amir Momen-Roknabadi ◽  
Panos Oikonomou ◽  
Maxwell Zegans ◽  
Saeed Tavazoie

AbstractGenome-scale CRISPR interference (CRISPRi) is widely utilized to study cellular processes in a variety of organisms. Despite the dominance of Saccharomyces cerevisiae as a model eukaryote, an inducible genome-wide CRISPRi library in yeast has not yet been presented. Here, we present a genome-wide, inducible CRISPRi library, based on spacer design rules optimized for S. cerevisiae. We have validated this library for genome-wide interrogation of gene function across a variety of applications, including accurate discovery of haploinsufficient genes and identification of enzymatic and regulatory genes involved in adenine and arginine biosynthesis. The comprehensive nature of the library also revealed refined spacer design parameters for transcriptional repression, including location, nucleosome occupancy and nucleotide features. CRISPRi screens using this library can identify genes and pathways with high precision and a low false discovery rate across a variety of experimental conditions, enabling rapid and reliable assessment of genetic function and interactions in S. cerevisiae.


Author(s):  
Amir Momen-Roknabadi ◽  
Panos Oikonomou ◽  
Maxwell Zegans ◽  
Saeed Tavazoie

AbstractGenome-scale CRISPR interference (CRISPRi) is widely utilized to study cellular processes in a variety of organisms. Despite its dominance as a model eukaryote, a genome-wide CRISPRi library, optimized for targeting the Saccharomyces cerevisiae genome, has not been presented to date. We have generated a comprehensive, inducible CRISPRi library, based on spacer design rules optimized for yeast. We have validated this library for genome-wide interrogation of gene function across a variety of applications, including accurate discovery of haploinsufficient genes and identification of enzymatic and regulatory genes involved in adenine and arginine biosynthesis. The comprehensive nature of the library also revealed parameters for optimal transcriptional repression, including upstream distance, nucleosomal occupancy, and strand bias. CRISPRi screens, using this library can identify genes and pathways with high precision and low false discovery rate across a variety of experimental conditions, enabling rapid and reliable genome-wide assessment of gene function and genetic interactions in S.cerevisiae.


2014 ◽  
Vol 226 (03) ◽  
Author(s):  
F Ponthan ◽  
D Pal ◽  
J Vormoor ◽  
O Heidenreich
Keyword(s):  

2007 ◽  
Vol 30 (4) ◽  
pp. 86
Author(s):  
M. Lanktree ◽  
J. Robinson ◽  
J. Creider ◽  
H. Cao ◽  
D. Carter ◽  
...  

Background: In Dunnigan-type familial partial lipodystrophy (FPLD) patients are born with normal fat distribution, but subcutaneous fat from extremities and gluteal regions are lost during puberty. The abnormal fat distribution leads to the development of metabolic syndrome (MetS), a cluster of phenotypes including hyperglycemia, dyslipidemia, hypertension, and visceral obesity. The study of FPLD as a monogenic model of MetS may uncover genetic risk factors of the common MetS which affects ~30% of adult North Americans. Two molecular forms of FPLD have been identified including FPLD2, resulting from heterozygous mutations in the LMNA gene, and FPLD3, resulting from both heterozygous dominant negative and haploinsufficiency mutations in the PPARG gene. However, many patients with clinically diagnosed FPLD have no mutation in either LMNA or PPARG, suggesting the involvement of additional genes in FPLD etiology. Methods: Here, we report the results of an Affymetrix 10K GeneChip microarray genome-wide linkage analysis study of a German kindred displaying the FPLD phenotype and no known lipodystrophy-causing mutations. Results: The investigation identified three chromosomal loci, namely 1q, 3p, and 9q, with non-parametric logarithm of odds (NPL) scores >2.7. While not meeting the criteria for genome-wide significance, it is interesting to note that the 1q and 3p peaks contain the LMNA and PPARG genes respectively. Conclusions: Three possible conclusions can be drawn from these results: 1) the peaks identified are spurious findings, 2) additional genes physically close to LMNA, PPARG, or within 9q, are involved in FPLD etiology, or 3) alternative disease causing mechanisms not identified by standard exon sequencing approaches, such as promoter mutations, alternative splicing, or epigenetics, are also responsible for FPLD.


Sign in / Sign up

Export Citation Format

Share Document