scholarly journals Selective stimulation of mast cells with a TLR2 agonist inhibits tumor growth in vivo

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Sharon Ann Oldford ◽  
Carlos A. Leiva ◽  
Brent Johnston ◽  
Jean S. Marshall
Biochemistry ◽  
2003 ◽  
Vol 42 (22) ◽  
pp. 6904-6911 ◽  
Author(s):  
D. W. Sandall ◽  
N. Satkunanathan ◽  
D. A. Keays ◽  
M. A. Polidano ◽  
X. Liping ◽  
...  

2011 ◽  
Vol 71 (19) ◽  
pp. 6122-6131 ◽  
Author(s):  
Yuhui Huang ◽  
Luping Lin ◽  
Anil Shanker ◽  
Anshu Malhotra ◽  
Li Yang ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3687-3687
Author(s):  
Elliot J. Stephenson ◽  
Humberto J. Martinez-Suarez ◽  
Mariya Farooqui ◽  
Debabrata Mukhopadhyay ◽  
Deborah A. Hughes ◽  
...  

Abstract Like VEGF, morphine stimulates MAPK/ERK and Akt, leading to the promotion of angiogenesis via NO dependent signaling (Cancer Res62: 4491, 2002). Morphine acts via pertussis toxin (PT)-dependent G-protein coupled receptors (GPCRS), while VEGF acts via receptor tyrosine kinases (RTKs). We showed that PT-dependent GPCRs transactivate VEGF receptor-2/Flk1 via small GTPase RhoA (JBC277: 4679, 2002; JBC278:20738, 2003). Therefore, we hypothesized that morphine via the mu opioid receptor (MOR) transactivates Flk1 and promotes a pro-angiogenic microenvironment. Morphine-induced proliferation of human umbilical vein endothelial cells (HUVEC) was completely abrogated by Y-27632 (100 μM), a highly selective and potent inhibitor of Rho-associated protein kinases, suggesting the activation of Rho signaling by morphine. Addition of 1 μM morphine potentiated VEGF-induced (10 ng/ml) proliferation of HUVEC by 25%. We observed a 30% increase in intracellular calcium release after VEGF stimulation of HUVEC pre-incubated with morphine as compared to HUVEC pre-incubated with PBS, detected by a change in the fluorescence ratio of the Fura-2 AM dye. These findings show that morphine, via MOR and Rho signaling, transactivates Flk1 leading to the stimulation of calcium signaling and endothelial cell proliferation. To functionally corroborate our hypothesis, we used MOR knockout (MOR-KO) mice and injected them with MOR-replete T241 fibrosarcoma cells. T241 fibrosarcoma tumor growth in vivo showed appearance of palpable and measurable tumors 2 days earlier in wild type (wt) as compared to MOR-KO mice. Tumor growth and angiogenesis were decreased by 20–35% in MOR-KO mice as compared to wt littermates during 3 weeks of tumor growth. None of the MOR-KO showed signs of lung metastasis versus 40% wt mice with metastasis. Morphine (1.42 for the first 2 wks and 2.14 mg/Kg/day later, respectively) stimulated 20–35% tumor growth in wt, but not in MOR-KO mice. Western immunoblotting showed a 10-fold increase in the expression of phospho-Flk1 in morphine treated wt tumors as compared to PBS-treated wt mice. Morphine did not stimulate phospho-Flk1 expression in MOR-KO mice. Western analysis of immunoprecipitates obtained with α-MOR antibody showed the expression of Flk1 and phospho-Flk1 in wt, but were not expressed in MOR-KO tumors. Thus, MOR stimulates the transactivation of Flk1 in wt mice but not in MOR-KO. These in vitro and in vivo data using MOR-KO mice and the MOR agonist, morphine, show that MOR stimulates endothelial proliferation, angiogenesis and promotes tumor growth and metastasis directly as well as by transactivating Flk1 phosphorylation. We speculate that MOR is a critical component of the ‘angiogenic switch’, which regulates the pro-angiogenic and growth promoting tumor microenvironment. Thus, MOR provides a novel target for developing anti-angiogenic therapies.


2010 ◽  
Vol 17 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Hailing Lu ◽  
Yi Yang ◽  
Ekram Gad ◽  
Cynthia A. Wenner ◽  
Amy Chang ◽  
...  

2019 ◽  
Vol 40 (1) ◽  
pp. 221-227
Author(s):  
CHANG-TA CHIU ◽  
SHYUN-YEU LIU ◽  
CHING-YU YEN ◽  
BANG-YEN LIU ◽  
ZI-YU SUN ◽  
...  

1976 ◽  
Vol 71 (2) ◽  
pp. 219-229 ◽  
Author(s):  
V. KEYMOLEN ◽  
P. DOR ◽  
A. BORKOWSKI

SUMMARY The output of oestrogens, testosterone and their precursors was compared with that of glucocorticosteroids under standardized conditions, in a suspension of isolated human adrenal cells. Cortisol, corticosterone, androstenedione, dehydroepiandrosterone and its sulphate all increased in the same proportions after ACTH stimulation. The response to the logarithm of ACTH concentrations had a sigmoid shape but was fairly linear between 5 and 100 to 1000 μu./ml. The output of dehydroepiandrosterone plus that of its sulphate was of the same order of magnitude as the production of cortisol; the output of free dehydroepiandrosterone averaged half that of the sulphate indicating that the adrenal cortex is capable, under certain conditions, of producing large amounts of the free steroid. The output of androstenedione was very low, on average 35 times lower than that of cortisol, suggesting by extrapolation that the adrenal secretion may not be the main source of androstenedione in vivo or that ACTH is not the unique stimulus to adrenal androstenedione secretion. The output of testosterone was small to negligible and that of oestrogens was practically absent. In three additional experiments the influence of prolactin, prostaglandins, FSH and HCG was explored: no selective stimulation of androgen or oestrogen output was observed except in one experiment in which HCG stimulated adrenal testosterone production.


1991 ◽  
Vol 94 (1-4) ◽  
pp. 137-140 ◽  
Author(s):  
Robert A. Seder ◽  
William E. Paul ◽  
Zami Ben-Sasson ◽  
Graham S. LeGros ◽  
Anne Kagey-Sobotka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document