scholarly journals Morphometrical analysis of ultrastructural transformation in gastric parietal cells reverting from the active to the resting state processed by high‐pressure freezing.

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Akira Sawaguchi ◽  
Fumiyo Toyoshima
2002 ◽  
Vol 283 (5) ◽  
pp. G1207-G1216 ◽  
Author(s):  
Snezana Petrovic ◽  
Zhaohui Wang ◽  
Liyun Ma ◽  
Ursula Seidler ◽  
John G. Forte ◽  
...  

The apical Cl−/HCO[Formula: see text] exchanger called the putative anion transporter (PAT1; SLC26A6) is expressed on apical membranes of villus cells in the duodenum, but its location in the stomach remains unknown. Here we examined the cell distribution and membrane location of PAT1 in mouse stomach. Immunofluorescence labeling studies with anti-PAT1 antibodies and Dolichos biflorusagglutinin indicated the exclusive expression of PAT1 in gastric parietal cells. Double immunocytochemical staining revealed colocalization of PAT1 with the gastric H-K-ATPase, consistent with expression in tubulovesicles and/or the secretory canaliculus. Radiolabeled 36Cl flux studies demonstrated the functional presence of Cl−/HCO[Formula: see text] exchange in purified tubulovesicles of parietal cells. The expression of PAT1 was significantly decreased in parietal cells of gastric H-K-ATPase-null mice, which exhibit a sharp reduction in tubulovesicle membranes. These data indicate that the Cl−/HCO[Formula: see text]exchanger PAT1 is localized on tubulovesicular membranes, and they are consistent with the hypothesis that it functions in the maintenance of intravesicular ion concentrations in the resting state and dehydration of vesicles derived from the secretory membranes following the transition from the stimulated to the resting state.


1988 ◽  
Vol 66 (4) ◽  
pp. 279-287 ◽  
Author(s):  
Yasuhiro Tsunoda ◽  
Hiroshi Takeda ◽  
Toshihiro Otaki ◽  
Masahiro Asaka ◽  
Ikuko Nakagaki ◽  
...  

In gastrin-stimulated, aequorin-loaded parietal cells from guinea pig gastric mucosa, a rapid but transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), owing to Ca2+ released from the store(s), and a more prolonged Ca2+ entry from outside the cells were observed. However, there was a little increase in [Ca2+]i when similar measurements were assessed by quin 2 or fura-2 in physiological saline. However, depletion or elimination of Na+ from the incubation medium caused a significant increase in the [Ca2+]; response to gastrin as measured by quin 2. These findings suggest that aequorin and quin 2 (or fura-2) provide information about different aspects of Ca2+ homeostasis and that there is an inhomogeneity of [Ca2+]i in the cytoplasm during gastrin stimulation. By the gastrin stimulation, the intracellular Ca2+ gradients were shifted from the unidentified portion(s) to the restricted apical cytoplasm, as determined by electron probe X-ray microanalysis. Therefore, localization and identification of the source of intracellular Ca2+ as a pool were determined by an X-ray microanalyzer. In the resting state, the tubulovesicle had high Ca2+ concentration compared with the level in the apical cytoplasm. Cells treated with the Ca2+ ionophore ionomycin had a decreased tubulovesicular Ca2+ level, followed by a reciprocal increase in area of the canalicular membrane. The secretory canaliculus in stimulated cells had lower Ca2+ or higher K+ and Cl− concentrations than that of tubulovesicles or cytoplasm in the resting state, respectively. These findings suggest that the Ca2+ pool of the parietal cell is in the tubulovesicles and (or) luminal cell membrane and that the Ca2+ released from the store(s) may mediate a flow of K+ or Cl− into the secretory canaliculus.


1989 ◽  
Vol 37 (7) ◽  
pp. 999-1005 ◽  
Author(s):  
Y Tsunoda ◽  
S Yodozawa ◽  
Y Tashiro

Spatial and temporal changes of cytoplasmic free calcium concentration ([Ca2+]i) in single parietal cells of guinea pig were investigated with a digital imaging microscope equipped with a microspectrofluorometer, using a Ca2+-sensitive dye, fura-2. Intracellular distribution of [Ca2+]i was not homogeneous, but there were two kinds of [Ca2+]i gradient in the resting parietal cells, one a continuous gradient increasing towards the plasma membrane and a second discontinuous gradient (Ca2+ plateau) in some restricted regions of the cytoplasm. When treated with gastrin, only about 40% of parietal cells in the gastric gland responded with an almost twofold increase in the average resting [Ca2+]i of 52.4 +/- 7.1 nM. In the responding cells, the discontinuous plateaus transiently enlarged to the entire cytoplasm. In marked contrast, all of these cells responded to Ca2+ ionophore ionomycin. We also found that when provoked by gastrin Ca2+ transient in the parietal cells in the gastric gland often propagated to some adjacent cells, and occasionally spontaneous Ca2+ transient and oscillation were observed even in the resting state.


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
R.E. Crang ◽  
M. Mueller ◽  
K. Zierold

Obtaining frozen-hydrated sections of plant tissues for electron microscopy and microanalysis has been considered difficult, if not impossible, due primarily to the considerable depth of effective freezing in the tissues which would be required. The greatest depth of vitreous freezing is generally considered to be only 15-20 μm in animal specimens. Plant cells are often much larger in diameter and, if several cells are required to be intact, ice crystal damage can be expected to be so severe as to prevent successful cryoultramicrotomy. The very nature of cell walls, intercellular air spaces, irregular topography, and large vacuoles often make it impractical to use immersion, metal-mirror, or jet freezing techniques for botanical material.However, it has been proposed that high-pressure freezing (HPF) may offer an alternative to the more conventional freezing techniques, inasmuch as non-cryoprotected specimens may be frozen in a vitreous, or near-vitreous state, to a radial depth of at least 0.5 mm.


Author(s):  
William P. Sharp ◽  
Robert W. Roberson

The aim of ultrastructural investigation is to analyze cell architecture and relate a functional role(s) to cell components. It is known that aqueous chemical fixation requires seconds to minutes to penetrate and stabilize cell structure which may result in structural artifacts. The use of ultralow temperatures to fix and prepare specimens, however, leads to a much improved preservation of the cell’s living state. A critical limitation of conventional cryofixation methods (i.e., propane-jet freezing, cold-metal slamming, plunge-freezing) is that only a 10 to 40 μm thick surface layer of cells can be frozen without distorting ice crystal formation. This problem can be allayed by freezing samples under about 2100 bar of hydrostatic pressure which suppresses the formation of ice nuclei and their rate of growth. Thus, 0.6 mm thick samples with a total volume of 1 mm3 can be frozen without ice crystal damage. The purpose of this study is to describe the cellular details and identify potential artifacts in root tissue of barley (Hordeum vulgari L.) and leaf tissue of brome grass (Bromus mollis L.) fixed and prepared by high-pressure freezing (HPF) and freeze substitution (FS) techniques.


Sign in / Sign up

Export Citation Format

Share Document