scholarly journals Gene expression basis for flexibility of intestinal maltase activity in young house sparrows

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
William Karasov ◽  
Claudia Gatica‐Sosa ◽  
Pawel Brzandęk ◽  
Enrique Caviedes‐Vidal
2021 ◽  
Vol 224 (6) ◽  
pp. jeb238451
Author(s):  
Haley E. Hanson ◽  
Cedric Zimmer ◽  
Bilal Koussayer ◽  
Aaron W. Schrey ◽  
J. Dylan Maddox ◽  
...  

ABSTRACTEpigenetic mechanisms may play a central role in mediating phenotypic plasticity, especially during range expansions, when populations face a suite of novel environmental conditions. Individuals may differ in their epigenetic potential (EP; their capacity for epigenetic modifications of gene expression), which may affect their ability to colonize new areas. One form of EP, the number of CpG sites, is higher in introduced house sparrows (Passer domesticus) than in native birds in the promoter region of a microbial surveillance gene, Toll-like Receptor 4 (TLR4), which may allow invading birds to fine-tune their immune responses to unfamiliar parasites. Here, we compared TLR4 gene expression from whole blood, liver and spleen in house sparrows with different EP, first challenging some birds with lipopolysaccharide (LPS), to increase gene expression by simulating a natural infection. We expected that high EP would predict high inducibility and reversibility of TLR4 expression in the blood of birds treated with LPS, but we did not make directional predictions regarding organs, as we could not repeatedly sample these tissues. We found that EP was predictive of TLR4 expression in all tissues. Birds with high EP expressed more TLR4 in the blood than individuals with low EP, regardless of treatment with LPS. Only females with high EP exhibited reversibility in gene expression. Further, the effect of EP varied between sexes and among tissues. Together, these data support EP as one regulator of TLR4 expression.


2000 ◽  
Vol 46 (4) ◽  
pp. 383-386 ◽  
Author(s):  
Julio C Ferreira ◽  
Anita D Panek ◽  
Pedro S de Araujo

Maltose transport and maltase activities were inactivated during sporulation of a MAL constitutive yeast strain harboring different MAL loci. Both activities were reduced to almost zero after 5 h of incubation in sporulation medium. The inactivation of maltase and maltose permease seems to be related to optimal sporulation conditions such as a suitable supply of oxygen and cell concentration in the sporulating cultures, and occurs in the fully derepressed conditions of incubation in the sporulation acetate medium. The inactivation of maltase and maltose permease under sporulation conditions in MAL constitutive strains suggests an alternative mechanism for the regulation of the MAL gene expression during the sporulation process.Key words: maltase activity, maltose permease activity, sporulation, Saccharomyces cerevisiae.


2019 ◽  
Vol 50 (6) ◽  
Author(s):  
Holly J. Kilvitis ◽  
Aaron W. Schrey ◽  
Alexandria K. Ragsdale ◽  
Alejandro Berrio ◽  
Steve M. Phelps ◽  
...  

2021 ◽  
Author(s):  
Christine R Lattin ◽  
Tosha R Kelly ◽  
Kevin M Johnson ◽  
Morgan W Kelly

Neophobia (aversion to new objects, food, and environments) is a personality trait that affects the ability of wildlife to adapt to new challenges and opportunities. Despite the ubiquity and importance of this trait, the molecular mechanisms underlying repeatable individual differences in neophobia in wild animals are poorly understood. We evaluated wild-caught house sparrows (Passer domesticus) for neophobia in the lab using novel object tests. We then selected the most and least neophobic individuals (n=3 of each) and extracted RNA from four brain regions involved in learning, memory, threat perception, and executive function: striatum, dorsomedial hippocampus, medial ventral arcopallium, and caudolateral nidopallium (NCL). Our analysis of differentially expressed genes (DEGs) used 11,889 gene regions annotated in the house sparrow reference genome for which we had an average of 25.7 million mapped reads/sample. PERMANOVA identified significant effects of brain region, phenotype (neophobic vs. non-neophobic), and a brain region by phenotype interaction. Comparing neophobic and non-neophobic birds revealed constitutive differences in DEGs in three of the four brain regions examined: hippocampus (12% of the transcriptome significantly differentially expressed), striatum (4%) and NCL (3%). DEGs included important known neuroendocrine mediators of learning, memory, executive function, and anxiety behavior, including serotonin receptor 5A, dopamine receptors 1, 2 and 5 (downregulated in neophobic birds), and estrogen receptor beta (upregulated in neophobic birds). These results suggest that some of the behavioral differences between phenotypes may be due to underlying gene expression differences in the brain. The large number of DEGs in neophobic and non-neophobic birds also implies that there are major differences in neural function between the two phenotypes that could affect a wide variety of behavioral traits beyond neophobia.


2014 ◽  
Vol 281 (1774) ◽  
pp. 20132690 ◽  
Author(s):  
Lynn B. Martin ◽  
Courtney A. C. Coon ◽  
Andrea L. Liebl ◽  
Aaron W. Schrey

Interactions between hosts and parasites influence the success of host introductions and range expansions post-introduction. However, the physiological mechanisms mediating these outcomes are little known. In some vertebrates, variation in the regulation of inflammation has been implicated, perhaps because inflammation imparts excessive costs, including high resource demands and collateral damage upon encounter with novel parasites. Here, we tested the hypothesis that variation in the regulation of inflammation contributed to the spread of house sparrows ( Passer domesticus ) across Kenya, one of the world's most recent invasions of this species. Specifically, we asked whether inflammatory gene expression declines with population age (i.e. distance from Mombasa (dfM), the site of introduction around 1950). We compared expression of two microbe surveillance molecules (Toll-like receptors, TLRs-2 and 4) and a proinflammatory cytokine (interleukin-6, IL-6) before and after an injection of an immunogenic component of Gram-negative bacteria (lipopolysaccharide, LPS) among six sparrow populations. We then used a best-subset model selection approach to determine whether population age (dfM) or other factors (e.g. malaria or coccidian infection, sparrow density or genetic group membership) best-explained gene expression. For baseline expression of TLR-2 and TLR-4 , population age tended to be the best predictor with expression decreasing with population age, although other factors were also important. Induced expression of TLRs was affected by LPS treatment alone. For induced IL-6 , only LPS treatment reliably predicted expression; baseline expression was not explained by any factor. These data suggest that changes in microbe surveillance, more so than downstream control of inflammation via cytokines, might have been important to the house sparrow invasion of Kenya.


Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.


Sign in / Sign up

Export Citation Format

Share Document