Inactivation of maltose permease and maltase in sporulatingSaccharomyces cerevisiae

2000 ◽  
Vol 46 (4) ◽  
pp. 383-386 ◽  
Author(s):  
Julio C Ferreira ◽  
Anita D Panek ◽  
Pedro S de Araujo

Maltose transport and maltase activities were inactivated during sporulation of a MAL constitutive yeast strain harboring different MAL loci. Both activities were reduced to almost zero after 5 h of incubation in sporulation medium. The inactivation of maltase and maltose permease seems to be related to optimal sporulation conditions such as a suitable supply of oxygen and cell concentration in the sporulating cultures, and occurs in the fully derepressed conditions of incubation in the sporulation acetate medium. The inactivation of maltase and maltose permease under sporulation conditions in MAL constitutive strains suggests an alternative mechanism for the regulation of the MAL gene expression during the sporulation process.Key words: maltase activity, maltose permease activity, sporulation, Saccharomyces cerevisiae.

2002 ◽  
Vol 1 (5) ◽  
pp. 696-703 ◽  
Author(s):  
Xin Wang ◽  
Mehtap Bali ◽  
Igor Medintz ◽  
Corinne A. Michels

ABSTRACT The presence of maltose induces MAL gene expression in Saccharomyces cells, but little is known about how maltose is sensed. Strains with all maltose permease genes deleted are unable to induce MAL gene expression. In this study, we examined the role of maltose permease in maltose sensing by substituting a heterologous transporter for the native maltose permease. PmSUC2 encodes a sucrose transporter from the dicot plant Plantago major that exhibits no significant sequence homology to maltose permease. When expressed in Saccharomyces cerevisiae, PmSUC2 is capable of transporting maltose, albeit at a reduced rate. We showed that introduction of PmSUC2 restores maltose-inducible MAL gene expression to a maltose permease-null mutant and that this induction requires the MAL activator. These data indicate that intracellular maltose is sufficient to induce MAL gene expression independently of the mechanism of maltose transport. By using strains expressing defective mal61 mutant alleles, we demonstrated a correlation between the rate of maltose transport and the level of the induction, which is particularly evident in medium containing very limiting concentrations of maltose. Moreover, our results indicate that a rather low concentration of intracellular maltose is needed to trigger MAL gene expression. We also showed that constitutive overexpression of either MAL61 maltose permease or PmSUC2 suppresses the noninducible phenotype of a defective mal13 MAL-activator allele, suggesting that this suppression is solely a function of maltose transport activity and is not specific to the sequence of the permease. Our studies indicate that maltose permease does not function as the maltose sensor in S. cerevisiae.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
K. Mukhtar ◽  
M. Asgher ◽  
S. Afghan ◽  
K. Hussain ◽  
S. Zia-ul-Hussnain

Two commercial strains of Saccharomyces cerevisiae, Saf-Instant (Baker's yeast) and Ethanol red (Mutant) were compared for ethanol production during hot summer season, using molasses diluted up to 6- Brix containing 4%-5% sugars. The yeasts were then propagated in fermentation vessels to study the effects of yeast cell count and varying concentrations of Urea, DAP, inoculum size and Lactrol (Antibiotic). Continuous circulation of mash was maintained for 24 hours and after this fermenter was allowed to stay for a period of 16 hours to give time for maximum conversion of sugars into ethanol. Saccharomyces cerevisiae strain (Saf-instant) with cell concentration of 400 millions/mL at molasses sugar level of 13%–15% (pH , Temp. ), inoculum size of 25% (v/v), urea concentration, 150 ppm, DAP, 53.4 ppm and Lactrol,150 ppm supported maximum ethanol production (8.8%) with  L ethanol per tone molasses (96.5% yield), and had significantly lower concentrations of byproducts. By selecting higher ethanol yielding yeast strain and optimizing the fermentation parameters both yield and economics of the fermentation process can be improved.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 121-132
Author(s):  
Zhen Hu ◽  
Yingzi Yue ◽  
Hua Jiang ◽  
Bin Zhang ◽  
Peter W Sherwood ◽  
...  

Abstract Expression of the MAL genes required for maltose fermentation in Saccharomyces cerevisiae is induced by maltose and repressed by glucose. Maltose-inducible regulation requires maltose permease and the MAL-activator protein, a DNA-binding transcription factor encoded by MAL63 and its homologues at the other MAL loci. Previously, we showed that the Mig1 repressor mediates glucose repression of MAL gene expression. Glucose also blocks MAL-activator-mediated maltose induction through a Mig1p-independent mechanism that we refer to as glucose inhibition. Here we report the characterization of this process. Our results indicate that glucose inhibition is also Mig2p independent. Moreover, we show that neither overexpression of the MAL-activator nor elimination of inducer exclusion is sufficient to relieve glucose inhibition, suggesting that glucose acts to inhibit induction by affecting maltose sensing and/or signaling. The glucose inhibition pathway requires HXK2, REG1, and GSF1 and appears to overlap upstream with the glucose repression pathway. The likely target of glucose inhibition is Snf1 protein kinase. Evidence is presented indicating that, in addition to its role in the inactivation of Mig1p, Snf1p is required post-transcriptionally for the synthesis of maltose permease whose function is essential for maltose induction.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 879-892 ◽  
Author(s):  
Anatoly V Grishin ◽  
Michael Rothenberg ◽  
Maureen A Downs ◽  
Kendall J Blumer

Abstract In the yeast Saccharomyces cerevisiae, mating pheromone response is initiated by activation of a G protein- and mitogen-activated protein (MAP) kinase-dependent signaling pathway and attenuated by several mechanisms that promote adaptation or desensitization. To identify genes whose products negatively regulate pheromone signaling, we screened for mutations that suppress the hyperadaptive phenotype of wild-type cells overexpressing signaling-defective G protein β subunits. This identified recessive mutations in MOT3, which encodes a nuclear protein with two Cys2-His2 Zn fingers. MOT3 was found to be a dosage-dependent inhibitor of pheromone response and pheromone-induced gene expression and to require an intact signaling pathway to exert its effects. Several results suggested that Mot3 attenuates expression of pheromone-responsive genes by mechanisms distinct from those used by the negative transcriptional regulators Cdc36, Cdc39, and Mot2. First, a Mot3-lexA fusion functions as a transcriptional activator. Second, Mot3 is a dose-dependent activator of several genes unrelated to pheromone response, including CYC1, SUC2, and LEU2. Third, insertion of consensus Mot3 binding sites (C/A/T)AGG(T/C)A activates a promoter in a MOT3-dependent manner. These findings, and the fact that consensus binding sites are found in the 5′ flanking regions of many yeast genes, suggest that Mot3 is a globally acting transcriptional regulator. We hypothesize that Mot3 regulates expression of factors that attenuate signaling by the pheromone response pathway.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 219
Author(s):  
Il-Sup Kim ◽  
Woong Choi ◽  
Jonghyeon Son ◽  
Jun Hyuck Lee ◽  
Hyoungseok Lee ◽  
...  

The cryoprotection of cell activity is a key determinant in frozen-dough technology. Although several factors that contribute to freezing tolerance have been reported, the mechanism underlying the manner in which yeast cells respond to freezing and thawing (FT) stress is not well established. Therefore, the present study demonstrated the relationship between DaMDHAR encoding monodehydroascorbate reductase from Antarctic hairgrass Deschampsia antarctica and stress tolerance to repeated FT cycles (FT2) in transgenic yeast Saccharomyces cerevisiae. DaMDHAR-expressing yeast (DM) cells identified by immunoblotting analysis showed high tolerance to FT stress conditions, thereby causing lower damage for yeast cells than wild-type (WT) cells with empty vector alone. To detect FT2 tolerance-associated genes, 3′-quant RNA sequencing was employed using mRNA isolated from DM and WT cells exposed to FT (FT2) conditions. Approximately 332 genes showed ≥2-fold changes in DM cells and were classified into various groups according to their gene expression. The expressions of the changed genes were further confirmed using western blot analysis and biochemical assay. The upregulated expression of 197 genes was associated with pentose phosphate pathway, NADP metabolic process, metal ion homeostasis, sulfate assimilation, β-alanine metabolism, glycerol synthesis, and integral component of mitochondrial and plasma membrane (PM) in DM cells under FT2 stress, whereas the expression of the remaining 135 genes was partially related to protein processing, selenocompound metabolism, cell cycle arrest, oxidative phosphorylation, and α-glucoside transport under the same condition. With regard to transcription factors in DM cells, MSN4 and CIN5 were activated, but MSN2 and MGA1 were not. Regarding antioxidant systems and protein kinases in DM cells under FT stress, CTT1, GTO, GEX1, and YOL024W were upregulated, whereas AIF1, COX2, and TRX3 were not. Gene activation represented by transcription factors and enzymatic antioxidants appears to be associated with FT2-stress tolerance in transgenic yeast cells. RCK1, MET14, and SIP18, but not YPK2, have been known to be involved in the protein kinase-mediated signalling pathway and glycogen synthesis. Moreover, SPI18 and HSP12 encoding hydrophilin in the PM were detected. Therefore, it was concluded that the genetic network via the change of gene expression levels of multiple genes contributing to the stabilization and functionality of the mitochondria and PM, not of a single gene, might be the crucial determinant for FT tolerance in DaMDAHR-expressing transgenic yeast. These findings provide a foundation for elucidating the DaMDHAR-dependent molecular mechanism of the complex functional resistance in the cellular response to FT stress.


Microbiology ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 459-467 ◽  
Author(s):  
E. Boy-Marcotte ◽  
D. Tadi ◽  
M. Perrot ◽  
H. Boucherie ◽  
M. Jacquet

1996 ◽  
Vol 12 (1) ◽  
pp. 145-148 ◽  
Author(s):  
J. Fu ◽  
C.B. Parker ◽  
P. Burke ◽  
L.D. Schultz ◽  
D.L. Montgomery ◽  
...  

Author(s):  
Hiroaki Negoro ◽  
Atsushi Kotaka ◽  
Hiroki Ishida

ABSTRACT Saccharomyces cerevisiae produces organic acids including malate during alcohol fermentation. Since malate contributes to the pleasant flavor of sake, high-malate-producing yeast strain No. 28 and No. 77 have been developed by the Brewing Society of Japan. In this study, the genes responsible for the high malate phenotype in these strains were investigated. We had found previously that the deletion of components of the glucose induced degradation-deficient (GID) complex led to high malate production in yeast. Upon examining GID protein-coding genes in yeast strain No. 28 and No. 77, a nonsense homozygous mutation of GID4 in strain No. 28, and of GID2 in strain No. 77, were identified as the cause of high malate production. Furthermore, complementary tests of these mutations indicated that the heterozygous nonsense mutation in GID2 was recessive. In contrast, the heterozygous nonsense mutation in GID4 was considered semi-dominant.


Sign in / Sign up

Export Citation Format

Share Document