scholarly journals Genes Inducing iPS Phenotype Play a Role in Hepatocyte Survival and Proliferation In Vitro and Liver Regeneration In Vivo

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Vishakha Bhave ◽  
Shirish Paranjpe ◽  
William C Bowen ◽  
Shashikiran Donthamsetty ◽  
Aaron Bell ◽  
...  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Jun-Yi Wu ◽  
An-Lai Ji ◽  
Zhong-xia Wang ◽  
Guang-Hui Qiang ◽  
Zhen Qu ◽  
...  

Hepatology ◽  
2011 ◽  
Vol 54 (4) ◽  
pp. 1360-1370 ◽  
Author(s):  
Vishakha S. Bhave ◽  
Shirish Paranjpe ◽  
William C. Bowen ◽  
Shashikiran Donthamsetty ◽  
Aaron W. Bell ◽  
...  

2021 ◽  
Author(s):  
Guolin He ◽  
Yu Fu ◽  
Zeyi Guo ◽  
Honglei Zhu ◽  
Lei Feng ◽  
...  

Abstract BackgroundExosomes are small nano-size membrane vesicles and are involved in intercellular interaction. Here, we examined if exosomes obtained from human placental stem cells promote liver regeneration after partial hepatectomy. MethodsExosomes generated from primary human placental stem cells were isolated and characterized. Cell co-culture model was used to clarify whether exosomes can induce hepatocytes proliferation in vitro . Partial hepatectomy mouse model was used to evaluate whether exosomes can promote hepatocytes proliferation in vivo . ResultsIt is found that human placental-derived stem cells exosomes (hPDSCs-exo) can induce hepatocyte proliferation in vitro and in vivo . Mechanistically, exosomal circ-RBM23 served as a ceRNA for miR-139-5p, regulated RRM2 and accelerated proliferation through AKT/mTOR pathways. Ablation of exosomal circ-RBM23 suppressed the proliferative effect of exosomes. ConclusionsThe hPMSCs exosomal circ-RBM23 stimulated cell proliferation and liver regeneration after 70% partial hepatectomy by regulated RRM2. Our findings highlight a potential novel therapeutic avenue for liver regeneration after hepatectomy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhengchuan Zhang ◽  
Ruogu Xu ◽  
Yang Yang ◽  
Chaoan Liang ◽  
Xiaolin Yu ◽  
...  

Abstract Background Micro/nano-textured hierarchical titanium topography is more bioactive and biomimetic than smooth, micro-textured or nano-textured titanium topographies. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs play important roles in the osseointegration of titanium implants, but the effects and mechanisms of titanium topography on BMSCs-derived exosome secretion are still unclear. This study determined whether the secretion behavior of exosomes derived from BMSCs is differently affected by different titanium topographies both in vitro and in vivo. Results We found that both micro/nanonet-textured hierarchical titanium topography and micro/nanotube-textured hierarchical titanium topography showed favorable roughness and hydrophilicity. These two micro/nano-textured hierarchical titanium topographies enhanced the spreading areas of BMSCs on the titanium surface with stronger promotion of BMSCs proliferation in vitro. Compared to micro-textured titanium topography, micro/nano-textured hierarchical titanium topography significantly enhanced osseointegration in vivo and promoted BMSCs to synthesize and transport exosomes and then release these exosomes into the extracellular environment both in vitro and in vivo. Moreover, micro/nanonet-textured hierarchical titanium topography promoted exosome secretion by upregulating RAB27B and SMPD3 gene expression and micro/nanotube-textured hierarchical titanium topography promoted exosome secretion due to the strongest enhancement in cell proliferation. Conclusions These findings provide evidence that micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and extracellular secretion for enhanced osseointegration. Our findings also highlight that the optimized titanium topography can increase exosome secretion from BMSCs, which may promote osseointegration of titanium implants.


1980 ◽  
Vol 238 (1) ◽  
pp. E46-E52
Author(s):  
S. L. Augustine ◽  
R. W. Swick

The recovery of approximately 40% of the total liver protein during the first day after partial hepatectomy was shown to be due to the near cessation of protein breakdown rather than to an increase in protein synthesis. The decrease in degradation of total protein was less if rats were adrenalectomized or protein-depleted prior to partial hepatectomy. The effect of these treatments originally suggested that changes in free amino acid levels in liver might be related to the rate of protein degradation. However, no correlation was found between levels of total free amino acids and rates of breakdown. Measurements of individual amino acids during liver regeneration suggested that levels of free methionine and phenylalanine, amino acids that have been found to lower rates of protein degradation in vitro, are not correlated with rates of breakdown in vivo. The difference between the fractional rate of ornithine aminotransferase degradation (0.68/day and 0.28/day in sham-hepatectomized and partially hepatectomized rats, respectively) was sufficient to account for the higher level of this protein 3 days after surgery in the latter group.


2005 ◽  
Vol 16 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Evaggelia S. Arsenou ◽  
Evangelia P. Papadimitriou ◽  
Eleni Kliafa ◽  
Maria Hountala ◽  
Sotiris S. Nikolaropoulos

1997 ◽  
Vol 51 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
Masashi Haraguchi ◽  
Mikio Okamura ◽  
Masayo Konishi ◽  
Yoshio Konishi ◽  
Nobuo Negoro ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Masataka Nishiga ◽  
Takahiro Horie ◽  
Yasuhide Kuwabara ◽  
Osamu Baba ◽  
Tetsushi Nakao ◽  
...  

Background: A highly conserved microRNA, miR-33 is considered as a potential therapeutic target for atherosclerosis, because recent reports, including ours, indicated miR-33 has atherogenic effects by reducing HDL-C. However, the functions of miR-33 in heart failure remain to be elucidated. Methods and results: To clarify the functions of miR-33 involved in cardiac hypertrophy and fibrosis in vivo, we investigated the responses to pressure overload by transverse aortic constriction (TAC) in miR-33 deficient (KO) mice. When subjected to TAC, miR-33 expression level was significantly up-regulated in wild-type (WT) left ventricles, whereas miR-33 KO hearts displayed no less hypertrophic responses than WT hearts. However, interestingly, histological and gene expression analyses showed ameliorated cardiac fibrosis in miR-33 KO hearts compared to WT hearts. Furthermore, we generated cardiac fibroblast specific miR-33 deficient mice, which also showed ameliorated cardiac fibrosis when they were subjected to TAC. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart, because its expression was about 4-folds higher in isolated primary cardiac fibroblasts than cardiomyocytes. Deficiency of miR-33 impaired cell proliferation in primary fibroblasts, which was considered due to altered lipid raft cholesterol content by up-regulated ATP-binding cassette transporter A1/G1. Conclusion: Deficiency of miR-33 impaired fibroblast proliferation in vitro, and ameliorated cardiac fibrosis induced by pressure overload in vivo.


Sign in / Sign up

Export Citation Format

Share Document