scholarly journals Glutamine activates heat shock transcription factor‐1 (HSF1) gene transcription

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Hongyu Xue ◽  
Dobromir Slavov ◽  
Paul Wischmeyer
1998 ◽  
Vol 18 (11) ◽  
pp. 6624-6633 ◽  
Author(s):  
Bin He ◽  
Yong-Hong Meng ◽  
Nahid F. Mivechi

ABSTRACT Heat shock transcription factor 1 (HSF-1) activates the transcription of heat shock genes in eukaryotes. Under normal physiological growth conditions, HSF-1 is a monomer. Its transcriptional activity is repressed by constitutive phosphorylation. Upon activation, HSF-1 forms trimers, acquires DNA binding activity, increases transcriptional activity, and appears as punctate granules in the nucleus. In this study, using bromouridine incorporation and confocal laser microscopy, we demonstrated that newly synthesized pre-mRNAs colocalize to the HSF-1 punctate granules after heat shock, suggesting that these granules are sites of transcription. We further present evidence that glycogen synthase kinase 3β (GSK-3β) and extracellular signal-regulated kinase mitogen-activated protein kinase (ERK MAPK) participate in the down regulation of HSF-1 transcriptional activity. Transient increases in the expression of GSK-3β facilitate the disappearance of HSF-1 punctate granules and reduce hsp-70 transcription after heat shock. We have also shown that ERK is the priming kinase for GSK-3β. Taken together, these results indicate that GSK-3β and ERK MAPK facilitate the inactivation of activated HSF-1 after heat shock by dispersing HSF-1 from the sites of transcription.


1991 ◽  
Vol 11 (7) ◽  
pp. 3676-3681
Author(s):  
W M Yang ◽  
W Gahl ◽  
D Hamer

The induction of Saccharomyces cerevisiae metallothionein gene transcription by Cu and Ag is mediated by the ACE1 transcription factor. In an effort to detect additional stimuli and factors that regulate metallothionein gene transcription, we isolated a Cu-resistant suppressor mutant of an ACE1 deletion strain. Even in the absence of metals, the suppressor mutant exhibited high basal levels of metallothionein gene transcription that required upstream promoter sequences. The suppressor gene was cloned, and its predicted product was shown to correspond to yeast heat shock transcription factor with a single-amino-acid substitution in the DNA-binding domain. The mutant heat shock factor bound strongly to metallothionein gene upstream promoter sequences, whereas wild-type heat shock factor interacted weakly with the same region. Heat treatment led to a slight but reproducible induction of metallothionein gene expression in both wild-type and suppressor strains, and Cd induced transcription in the mutant strain. These studies provide evidence for multiple pathways of metallothionein gene transcriptional regulation in S. cerevisiae.


Zebra fish has long been considered to be as a strong animal model in biology and modern genetics; however now a days its gaining lot of importance in environmental studies as well. The readily availability of entire genome sequences made to permit carrying out in silico studies at Genomic level. As everyone is known that stress is much more complex and complicated process that involves so much of gene regulations known as up regulation and down regulation, the corresponding stress proteins, broadly known as heat shock proteins. In the current study, the potential transcription factor binding sites were traced out by using bioinformatics tools and about 50 heat shock protein genes were predicted by using special alogorithms using pattern matching and position weight matrices. The 3D structure of DNA-binding domain of HSTF-1 ( Heat Shock Transcription factor-1) which is crucial for regulating heat shot proteins was traced out and builted by using homology modelling methods. The 3D structure of the heat shock transcription factor-1 and together with predicted transcription factor binding sites may be validated in future experimental works which would help us in understanding the complex responsive stress mechanisms lying in Zebra fish.


1995 ◽  
Vol 15 (9) ◽  
pp. 5063-5070 ◽  
Author(s):  
F A Torres ◽  
J J Bonner

The heat shock transcription factor (HSF), a trimeric transcription factor, activates the expression of heat shock genes in eukaryotes. We have isolated mutations in the HSF1 gene from Saccharomyces cerevisiae that severely compromise the ability of HSF to bind to its normal binding site, repeats of the module nGAAn. One of these mutations, Q229R, shows a "new specificity" phenotype, in which the protein prefers the mutant sequence nGACn. These results identify the region of HSF that contacts DNA, in complete agreement with the crystal structure of HSF of Kluyveromyces lactis and the nuclear magnetic resonance data from HSF of Drosophila melanogaster. To determine the orientation of the DNA-binding domain on the nGAAn motif, we performed site-specific cross-linking between cysteine residues of single-cysteine substitutions. Cysteines placed at the N terminus of the DNA contact helix formed cross-links readily, while cysteines placed at the C terminus of the helix did not.


2004 ◽  
Vol 70 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Hanae Izu ◽  
Sachiye Inouye ◽  
Mitsuaki Fujimoto ◽  
Koji Shiraishi ◽  
Katsusuke Naito ◽  
...  

2016 ◽  
Vol 23 (2) ◽  
pp. 140-146 ◽  
Author(s):  
Tobias Neudegger ◽  
Jacob Verghese ◽  
Manajit Hayer-Hartl ◽  
F Ulrich Hartl ◽  
Andreas Bracher

Sign in / Sign up

Export Citation Format

Share Document