Role of heat shock transcription factor in yeast metallothionein gene expression

1991 ◽  
Vol 11 (7) ◽  
pp. 3676-3681
Author(s):  
W M Yang ◽  
W Gahl ◽  
D Hamer

The induction of Saccharomyces cerevisiae metallothionein gene transcription by Cu and Ag is mediated by the ACE1 transcription factor. In an effort to detect additional stimuli and factors that regulate metallothionein gene transcription, we isolated a Cu-resistant suppressor mutant of an ACE1 deletion strain. Even in the absence of metals, the suppressor mutant exhibited high basal levels of metallothionein gene transcription that required upstream promoter sequences. The suppressor gene was cloned, and its predicted product was shown to correspond to yeast heat shock transcription factor with a single-amino-acid substitution in the DNA-binding domain. The mutant heat shock factor bound strongly to metallothionein gene upstream promoter sequences, whereas wild-type heat shock factor interacted weakly with the same region. Heat treatment led to a slight but reproducible induction of metallothionein gene expression in both wild-type and suppressor strains, and Cd induced transcription in the mutant strain. These studies provide evidence for multiple pathways of metallothionein gene transcriptional regulation in S. cerevisiae.

1991 ◽  
Vol 11 (7) ◽  
pp. 3676-3681 ◽  
Author(s):  
W M Yang ◽  
W Gahl ◽  
D Hamer

The induction of Saccharomyces cerevisiae metallothionein gene transcription by Cu and Ag is mediated by the ACE1 transcription factor. In an effort to detect additional stimuli and factors that regulate metallothionein gene transcription, we isolated a Cu-resistant suppressor mutant of an ACE1 deletion strain. Even in the absence of metals, the suppressor mutant exhibited high basal levels of metallothionein gene transcription that required upstream promoter sequences. The suppressor gene was cloned, and its predicted product was shown to correspond to yeast heat shock transcription factor with a single-amino-acid substitution in the DNA-binding domain. The mutant heat shock factor bound strongly to metallothionein gene upstream promoter sequences, whereas wild-type heat shock factor interacted weakly with the same region. Heat treatment led to a slight but reproducible induction of metallothionein gene expression in both wild-type and suppressor strains, and Cd induced transcription in the mutant strain. These studies provide evidence for multiple pathways of metallothionein gene transcriptional regulation in S. cerevisiae.


1994 ◽  
Vol 14 (12) ◽  
pp. 8155-8165 ◽  
Author(s):  
K T Tamai ◽  
X Liu ◽  
P Silar ◽  
T Sosinowski ◽  
D J Thiele

Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothionein gene, designated CUP1, is transcriptionally activated in response to heat shock and glucose starvation through the action of heat shock transcription factor (HSF) and a heat shock element located within the CUP1 promoter upstream regulatory region. CUP1 gene activation in response to both stresses occurs rapidly; however, heat shock activates CUP1 gene expression transiently, whereas glucose starvation activates CUP1 gene expression in a sustained manner for at least 2.5 h. Although a carboxyl-terminal HSF transcriptional activation domain is critical for the activation of CUP1 transcription in response to both heat shock stress and glucose starvation, this region is dispensable for transient heat shock activation of at least two genes encoding members of the S. cerevisiae hsp70 family. Furthermore, inactivation of the chromosomal SNF1 gene, encoding a serine-threonine protein kinase, or the SNF4 gene, encoding a SNF1 cofactor, abolishes CUP1 transcriptional activation in response to glucose starvation without altering heat shock-induced transcription. These studies demonstrate that the S. cerevisiae HSF responds to multiple, distinct stimuli to activate yeast metallothionein gene transcription and that these stimuli elicit responses through nonidentical, genetically separable signalling pathways.


1994 ◽  
Vol 14 (12) ◽  
pp. 8155-8165 ◽  
Author(s):  
K T Tamai ◽  
X Liu ◽  
P Silar ◽  
T Sosinowski ◽  
D J Thiele

Metallothioneins constitute a class of low-molecular-weight, cysteine-rich metal-binding stress proteins which are biosynthetically regulated at the level of gene transcription in response to metals, hormones, cytokines, and other physiological and environmental stresses. In this report, we demonstrate that the Saccharomyces cerevisiae metallothionein gene, designated CUP1, is transcriptionally activated in response to heat shock and glucose starvation through the action of heat shock transcription factor (HSF) and a heat shock element located within the CUP1 promoter upstream regulatory region. CUP1 gene activation in response to both stresses occurs rapidly; however, heat shock activates CUP1 gene expression transiently, whereas glucose starvation activates CUP1 gene expression in a sustained manner for at least 2.5 h. Although a carboxyl-terminal HSF transcriptional activation domain is critical for the activation of CUP1 transcription in response to both heat shock stress and glucose starvation, this region is dispensable for transient heat shock activation of at least two genes encoding members of the S. cerevisiae hsp70 family. Furthermore, inactivation of the chromosomal SNF1 gene, encoding a serine-threonine protein kinase, or the SNF4 gene, encoding a SNF1 cofactor, abolishes CUP1 transcriptional activation in response to glucose starvation without altering heat shock-induced transcription. These studies demonstrate that the S. cerevisiae HSF responds to multiple, distinct stimuli to activate yeast metallothionein gene transcription and that these stimuli elicit responses through nonidentical, genetically separable signalling pathways.


2011 ◽  
Vol 111 (4) ◽  
pp. 1142-1149 ◽  
Author(s):  
Kazuyuki Yasuhara ◽  
Yoshitaka Ohno ◽  
Atsushi Kojima ◽  
Kenji Uehara ◽  
Moroe Beppu ◽  
...  

Effects of heat shock transcription factor 1 (HSF1) gene on the regrowth of atrophied mouse soleus muscles were studied. Both HSF1-null and wild-type mice were subjected to continuous hindlimb suspension for 2 wk followed by 4 wk of ambulation recovery. There was no difference in the magnitude of suspension-related decrease of muscle weight, protein content, and the cross-sectional area of muscle fibers between both types of mice. However, the regrowth of atrophied soleus muscle in HSF1-null mice was slower compared with that in wild-type mice. Lower baseline expression level of HSP25, HSC70, and HSP72 were noted in soleus muscle of HSF1-null mice. Unloading-associated downregulation and reloading-associated upregulation of HSP25 and HSP72 mRNA were observed not only in wild-type mice but also in HSF1-null mice. Reloading-associated upregulation of HSP72 and HSP25 during the regrowth of atrophied muscle was observed in wild-type mice. Minor and delayed upregulation of HSP72 at mRNA and protein levels was also seen in HSF1-null mice. Significant upregulations of HSF2 and HSF4 were observed immediately after the suspension in HSF1-null mice, but not in wild-type mice. Therefore, HSP72 expression in soleus muscle might be regulated by the posttranscriptional level, but not by the stress response. Evidence from this study suggested that the upregulation of HSPs induced by HSF1-associated stress response might play, in part, important roles in the mechanical loading (stress)-associated regrowth of skeletal muscle.


1995 ◽  
Vol 15 (11) ◽  
pp. 6013-6024 ◽  
Author(s):  
N Landsberger ◽  
A P Wolffe

Xenopus laevis oocytes activate transcription from the Xenopus hsp70 promoter within a chromatin template in response to heat shock. Expression of exogenous Xenopus heat shock transcription factor 1 (XHSF1) causes the activation of the wild-type hsp70 promoter within chromatin. XHSF1 activates transcription at normal growth temperatures (18 degrees C), but heat shock (34 degrees C) facilitates transcriptional activation. Titration of chromatin in vivo leads to constitutive transcription from the wild-type hsp70 promoter. The Y box elements within the hsp70 promoter facilitate transcription in the presence or absence of chromatin. The presence of the Y box elements prevents the assembly of canonical nucleosomal arrays over the promoter and facilitates transcription. In a mutant hsp70 promoter lacking Y boxes, exogenous XHSF1 activates transcription from a chromatin template much more efficiently under heat shock conditions. Activation of transcription from the mutant promoter by exogenous XHSF1 correlates with the disappearance of a canonical nucleosomal array over the promoter. Chromatin structure on a mutant hsp70 promoter lacking Y boxes can restrict XHSF1 access; however, on both mutant and wild-type promoters, chromatin assembly can also restrict the function of the basal transcriptional machinery. We suggest that chromatin assembly has a physiological role in establishing a transcriptionally repressed state on the Xenopus hsp70 promoter in vivo.


2016 ◽  
Vol 473 (6) ◽  
pp. 789-796 ◽  
Author(s):  
Hyoe-Jin Joo ◽  
Saeram Park ◽  
Kwang-Youl Kim ◽  
Mun-Young Kim ◽  
Heekyeong Kim ◽  
...  

Heat-shock transcription factor HSF-1 appears to mediate enhanced ascaroside biosynthesis under heat stress by stimulating peroxisomal gene expression. Thus HSF-1 may be one of the regulatory factors involved in biosynthesis of ascaroside pheromones.


Sign in / Sign up

Export Citation Format

Share Document