scholarly journals Antioxidant Effects of Nordihydroguaiaretic Acid on Oxidative Stress in Caenorhabditis elegans

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Andrea Korell ◽  
Patti Erickson
Chemosphere ◽  
2021 ◽  
Vol 272 ◽  
pp. 129642
Author(s):  
Haibo Chen ◽  
Xin Hua ◽  
Hui Li ◽  
Chen Wang ◽  
Yao Dang ◽  
...  

2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Andra-Diana Andreicut ◽  
Alina Elena Pârvu ◽  
Augustin Cătălin Mot ◽  
Marcel Pârvu ◽  
Eva Fischer Fodor ◽  
...  

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82657 ◽  
Author(s):  
I-Ling Tseng ◽  
Ying-Fei Yang ◽  
Chan-Wei Yu ◽  
Wen-Hsuan Li ◽  
Vivian Hsiu-Chuan Liao

2017 ◽  
Vol 20 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Yanxia Xiang ◽  
Ju Zhang ◽  
Haifeng Li ◽  
Qiangqiang Wang ◽  
Lingyun Xiao ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Abhijit Sarkar ◽  
Swarnendu Basak ◽  
Sumit Ghosh ◽  
Sushweta Mahalanobish ◽  
Parames C. Sil

The mortality rate due to malaria has increased tremendously in the last decade. Even though the causative agent of this disease is known, the preventive measures are not potent enough to control the spread of this disease. Malarial infection involves a strong interrelationship between oxidative stress and pathogenesis. This review addresses the various oxidative stress-related mechanisms associated with vector defense, host immunity, plasmodial pathogenesis, and corresponding therapeutic strategies. The mechanisms involving host and vector defense show both similarity and contradiction to the processes involving plasmodial pathogenesis under different circumstances. Therefore, corresponding ameliorative peculiarities are observed in the therapeutic mechanisms adopted by the anti-malarial drugs. The malarial parasite augments oxidative stress to weaken the host and exerts antioxidant effects against host defense mechanisms. However, the anti-malarial drugs induce oxidative insult to reduce parasitic load and exert antioxidant effects against parasite infection-induced oxidative stress in host. Thus, the anti-malarial drugs exhibit antioxidant activity in hosts and/or pro-oxidant activity in parasites.


2018 ◽  
Vol 128 ◽  
pp. S125
Author(s):  
Edson Lucas dos Santos ◽  
Natasha Leite ◽  
Laura Costa Alves de Araújo ◽  
José Tarcisio Giffoni de Carvalho ◽  
Kely de Picoli Souza

Sign in / Sign up

Export Citation Format

Share Document