Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity

2014 ◽  
Vol 28 (12) ◽  
pp. 5361-5375 ◽  
Author(s):  
Mariëtte R. Boon ◽  
Sander Kooijman ◽  
Andrea D. Dam ◽  
Leonard R. Pelgrom ◽  
Jimmy F. P. Berbée ◽  
...  
2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jimmy F Berbée ◽  
Mariëtte R Boon ◽  
Andrea D van Dam ◽  
Anita M van den Hoek ◽  
Marc Lombès ◽  
...  

Objectives: The endocannabinoid system is an important player in energy metabolism by regulating appetite, lipolysis and energy expenditure. Chronic blockade of the cannabinoid 1 receptor (CB1R) leads to long-term maintained weight loss and reduction of dyslipidemia in experimental and human obesity. Brown adipose tissue (BAT) that burns lipids towards heat using UCP1, recently emerged as a major player in lipoprotein metabolism and is present and active in human adults. The aim of the present study was to elucidate the mechanism by which CB1R blockade reverses dyslipidemia and obesity, with special focus on BAT. Methods and results: Diet-induced obese APOE*3-Leiden.CETP transgenic mice, a well-established model for human-like lipoprotein metabolism, were treated with the systemic CB1R blocker rimonabant (10 mg/kg/day) for 4 weeks. Rimonabant persistently decreased body weight (-25%, p<0.001), fat mass (-32%, p<0.001) and plasma triglyceride (TG) levels (-60%, p<0.05), despite a modest and transient reduction in food intake. Interestingly, rimonabant reduced plasma TG levels, not by affecting VLDL-TG production by the liver, but rather by selectively increasing VLDL-TG clearance by BAT (+40%, p<0.05). This was accompanied by increased energy expenditure (+20%, p<0.05), decreased lipid droplet size and increased UCP1 content in BAT (+28%, p<0.05), all pointing to increased BAT activity. Next, we demonstrated that the CB1R is highly expressed in BAT and that in vitro blockade of the CB1R in cultured brown adipocytes resulted in 2.5-fold upregulation of UCP1. Importantly, the in vivo results could be fully recapitulated using the strictly peripheral CB1R antagonist AM6545 (10 mg/kg/day) that does not induce hypophagia. Conclusion: CB1R blockade reduces dyslipidemia and obesity by peripheral activation of BAT. Selective targeting of peripheral CB1R in BAT has thus great therapeutic potential in decreasing dyslipidemia and obesity and ultimately cardiovascular diseases.


2011 ◽  
Vol 96 (4) ◽  
pp. E598-E605 ◽  
Author(s):  
Sander L. J. Wijers ◽  
Patrick Schrauwen ◽  
Marleen A. van Baak ◽  
Wim H. M. Saris ◽  
Wouter D. van Marken Lichtenbelt

Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1192-1192
Author(s):  
Sander L. J. Wijers ◽  
Patrick Schrauwen ◽  
Marleen A. van Baak ◽  
Wim H. M. Saris ◽  
Wouter D. van Marken Lichtenbelt

2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


2011 ◽  
Vol 6 (S 01) ◽  
Author(s):  
M Merkel ◽  
A Bartelt ◽  
K Brügelmann ◽  
J Heeren

2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
K Krause ◽  
M Kranz ◽  
V Zeisig ◽  
N Klöting ◽  
K Steinhoff ◽  
...  

2020 ◽  
Author(s):  
G Lenihan-Geels ◽  
F Garcia-Carrizo ◽  
C Li ◽  
M Oster ◽  
A Prokesch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document