Nuclear factor I‐C reciprocally regulates adipocyte and osteoblast differentiation via control of canonical Wnt signaling

2017 ◽  
Vol 31 (5) ◽  
pp. 1939-1952 ◽  
Author(s):  
Jie Zhou ◽  
Shan Wang ◽  
Qi Qi ◽  
Xiaoyue Yang ◽  
Endong Zhu ◽  
...  
2020 ◽  
Vol 235 (11) ◽  
pp. 8293-8303
Author(s):  
Rodrigo Paolo Flores Abuna ◽  
Fabiola Singaretti Oliveira ◽  
Leticia Faustino Adolpho ◽  
Roger Rodrigo Fernandes ◽  
Adalberto Luiz Rosa ◽  
...  

2020 ◽  
Vol 295 (51) ◽  
pp. 17560-17572
Author(s):  
Siu Chiu Chan ◽  
Sachin S. Hajarnis ◽  
Sophia M. Vrba ◽  
Vishal Patel ◽  
Peter Igarashi

Hepatocyte nuclear factor-1β (HNF-1β) is a tissue-specific transcription factor that is required for normal kidney development and renal epithelial differentiation. Mutations of HNF-1β produce congenital kidney abnormalities and inherited renal tubulopathies. Here, we show that ablation of HNF-1β in mIMCD3 renal epithelial cells results in activation of β-catenin and increased expression of lymphoid enhancer–binding factor 1 (LEF1), a downstream effector in the canonical Wnt signaling pathway. Increased expression and nuclear localization of LEF1 are also observed in cystic kidneys from Hnf1b mutant mice. Expression of dominant-negative mutant HNF-1β in mIMCD3 cells produces hyperresponsiveness to exogenous Wnt ligands, which is inhibited by siRNA-mediated knockdown of Lef1. WT HNF-1β binds to two evolutionarily conserved sites located 94 and 30 kb from the mouse Lef1 promoter. Ablation of HNF-1β decreases H3K27 trimethylation repressive marks and increases β-catenin occupancy at a site 4 kb upstream to Lef1. Mechanistically, WT HNF-1β recruits the polycomb-repressive complex 2 that catalyzes H3K27 trimethylation. Deletion of the β-catenin–binding domain of LEF1 in HNF-1β–deficient cells abolishes the increase in Lef1 transcription and decreases the expression of downstream Wnt target genes. The canonical Wnt target gene, Axin2, is also a direct transcriptional target of HNF-1β through binding to negative regulatory elements in the gene promoter. These findings demonstrate that HNF-1β regulates canonical Wnt target genes through long-range effects on histone methylation at Wnt enhancers and reveal a new mode of active transcriptional repression by HNF-1β.


2005 ◽  
Vol 19 (1) ◽  
pp. 90-101 ◽  
Author(s):  
Julia Billiard ◽  
Deana S. Way ◽  
Laura M. Seestaller-Wehr ◽  
Robert A. Moran ◽  
Annamarie Mangine ◽  
...  

Abstract Ror2 is an orphan receptor tyrosine kinase that plays crucial roles in developmental morphogenesis, particularly of the skeleton. We have identified human Ror2 as a novel regulator of canonical Wnt signaling in osteoblastic (bone-forming) cells with selective activities, enhancing Wnt1 but antagonizing Wnt3. Immunoprecipitation studies demonstrated physical interactions between human Ror2 and mammalian Wnt1 and Wnt3. Functionally, Ror2 antagonized Wnt1- and Wnt3-mediated stabilization of cytosolic β-catenin in osteoblastic cells. However, Ror2 had opposing effects on a more distal step of canonical Wnt signaling: it potentiated Wnt1 activity but inhibited Wnt3 function as assessed by changes in Wnt-responsive reporter gene activity. Despite binding to Ror2, neither Wnt1 nor Wnt3 altered receptor activity as assessed by levels of Ror2 autophosphorylation. The ability of Ror2 to regulate canonical Wnt signaling in osteoblastic cells should have physiological consequences in bone, because Wnt signaling is known to modulate osteoblast survival and differentiation. Expression of Ror2 mRNA was highly regulated in a biphasic manner during human osteoblast differentiation, being virtually undetectable in pluripotent stem cells, increasing 300-fold in committed preosteoblasts, and disappearing again in osteocytes. Furthermore, Ror2 expression in osteoblasts was suppressed by the Wnt antagonist, secreted frizzled-related protein 1. The regulated expression of Ror2 during osteoblast differentiation, its inverse expression pattern with secreted frizzled-related protein 1, and its ability to modulate Wnt signaling in osteoblastic cells suggest that Ror2 may regulate bone formation.


2017 ◽  
Author(s):  
Kreepa Kooblall ◽  
Mark Stevenson ◽  
Raoul Hennekam ◽  
Rajesh Thakker

Sign in / Sign up

Export Citation Format

Share Document