scholarly journals Fndc5 loss‐of‐function attenuates exercise‐induced browning of white adipose tissue in mice

2019 ◽  
Vol 33 (5) ◽  
pp. 5876-5886 ◽  
Author(s):  
Yan Xiong ◽  
Zihuan Wu ◽  
Bin Zhang ◽  
Chao Wang ◽  
Fengyi Mao ◽  
...  
2012 ◽  
Vol 302 (6) ◽  
pp. E705-E713 ◽  
Author(s):  
Xin Cui ◽  
Yuhui Wang ◽  
Lingjun Meng ◽  
Weihua Fei ◽  
Jingna Deng ◽  
...  

Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is a recessive disorder characterized by an almost complete loss of adipose tissue, insulin resistance, and fatty liver. BSCL2 is caused by loss-of-function mutations in the BSCL2/seipin gene, which encodes seipin. The essential role for seipin in adipogenesis has recently been established both in vitro and in vivo. However, seipin is highly upregulated at later stages of adipocyte development, and its role in mature adipocytes remains to be elucidated. We therefore generated transgenic mice overexpressing a short isoform of human BSCL2 gene (encoding 398 amino acids) using the adipocyte-specific aP2 promoter. The transgenic mice produced ∼150% more seipin than littermate controls in white adipose tissue. Surprisingly, the increased expression of seipin markedly reduced the mass of white adipose tissue and the size of adipocytes and lipid droplets. This may be due in part to elevated lipolysis rates in the transgenic mice. Moreover, there was a nearly 50% increase in the triacylglycerol content of transgenic liver. These results suggest that seipin promotes the differentiation of preadipocytes but may inhibit lipid storage in mature adipocytes.


2020 ◽  
Vol 52 (7S) ◽  
pp. 920-920
Author(s):  
Elias Maurice Malek ◽  
Caitlin K. Reynolds ◽  
Charli D. Aguilar ◽  
Graham R. McGinnis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marianne Bléher ◽  
Berbang Meshko ◽  
Isabelle Cacciapuoti ◽  
Rachel Gergondey ◽  
Yoann Kovacs ◽  
...  

Abstract In mice, exercise, cold exposure and fasting lead to the differentiation of inducible-brown adipocytes, called beige adipocytes, within white adipose tissue and have beneficial effects on fat burning and metabolism, through heat production. This browning process is associated with an increased expression of the key thermogenic mitochondrial uncoupling protein 1, Ucp1. Egr1 transcription factor has been described as a regulator of white and beige differentiation programs, and Egr1 depletion is associated with a spontaneous increase of subcutaneous white adipose tissue browning, in absence of external stimulation. Here, we demonstrate that Egr1 mutant mice exhibit a restrained Ucp1 expression specifically increased in subcutaneous fat, resulting in a metabolic shift to a more brown-like, oxidative metabolism, which was not observed in other fat depots. In addition, Egr1 is necessary and sufficient to promote white and alter beige adipocyte differentiation of mouse stem cells. These results suggest that modulation of Egr1 expression could represent a promising therapeutic strategy to increase energy expenditure and to restrain obesity-associated metabolic disorders.


2020 ◽  
Author(s):  
Marianne Bléher ◽  
Berbang Meshko ◽  
Rachel Gergondey ◽  
Yoann Kovacs ◽  
Delphine Duprez ◽  
...  

AbstractExercise, cold exposure and fasting lead to the differentiation of inducible-brown adipocytes, called beige adipocytes, within white adipose tissue and have beneficial effects on fat burning and metabolism, through heat production. This browning process is associated with an increased expression of the key thermogenic mitochondrial uncoupling protein 1, Ucp1. Egr1 transcription factor has been described as a regulator of white and beige differentiation programs, and Egr1 depletion is associated with a spontaneous increase of subcutaneous white adipose tissue browning, in absence of external stimulation. Here, we demonstrate that Egr1 mutant mice exhibit a restrained Ucp1 expression specifically increased in subcutaneous fat, resulting in a metabolic shift to a more brown-like, oxidative metabolism, which was not observed in other fat depots. In addition, Egr1 is necessary and sufficient to promote white and alter beige adipocyte differentiation of mouse stem cells. These results suggest that modulation of Egr1 expression could represent a promising therapeutic strategy to increase energy expenditure and to restrain obesity-associated metabolic disorders.


2020 ◽  
Vol 477 (6) ◽  
pp. 1061-1081 ◽  
Author(s):  
Greg L. McKie ◽  
David C. Wright

Our understanding of white adipose tissue (WAT) biochemistry has evolved over the last few decades and it is now clear that WAT is not simply a site of energy storage, but rather a pliable endocrine organ demonstrating dynamic responsiveness to the effects of aerobic exercise. Similar to its established effects in skeletal muscle, aerobic exercise induces many biochemical adaptations in WAT including mitochondrial biogenesis and browning. While past research has focused on the regulation of these biochemical processes, there has been renewed interest as of late given the potential of harnessing WAT mitochondrial biogenesis and browning to treat obesity and type II diabetes. Unfortunately, despite increasing evidence that innumerable factors, both exercise induced and pharmacological, can elicit these biochemical adaptations in WAT, the underlying mechanisms remain poorly defined. Here, we begin with a historical account of our understanding of WAT exercise biochemistry before presenting detailed evidence in favour of an up-to-date model by which aerobic exercise induces mitochondrial biogenesis and browning in WAT. Specifically, we discuss how aerobic exercise induces increases in WAT lipolysis and re-esterification and how this could be a trigger that activates the cellular energy sensor 5′ AMP-activated protein kinase to mediate the induction of mitochondrial biogenesis and browning via the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator-1 alpha. While this review primarily focuses on mechanistic results from rodent studies special attention is given to the translation of these results, or lack thereof, to human physiology.


2022 ◽  
Author(s):  
Lu Wang ◽  
Xinmeng Liu ◽  
Sujuan Liu ◽  
Yanmei Niu ◽  
Li Fu

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Peter Aldiss ◽  
Jo Lewis ◽  
Fran Ebling ◽  
David Bookcock ◽  
Helen Budge ◽  
...  

2021 ◽  
Vol 17 (6) ◽  
pp. 20210171
Author(s):  
Greg L. McKie ◽  
David C. Wright

Mice are the most commonly used model organism for human biology, and failure to acknowledge fundamental differences in thermal biology between these species has confounded the study of adipose tissue metabolism in mice and its translational relevance to humans. Here, using exercise biochemistry as an example, we highlight the subtle yet detrimental effects sub-thermoneutral housing temperatures can have on the study of adipose tissue metabolism in mice. We encourage academics and publishers to consider ambient housing temperature as a key determinant in the methodological conception and reporting of all research on rodent white adipose tissue metabolism.


Sign in / Sign up

Export Citation Format

Share Document