scholarly journals Uncoupling protein (UCP)1 and exercise induced ‘browning’ of white adipose tissue is absent at thermoneutrality

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Peter Aldiss ◽  
Jo Lewis ◽  
Fran Ebling ◽  
David Bookcock ◽  
Helen Budge ◽  
...  
2019 ◽  
Vol 51 (09) ◽  
pp. 608-617 ◽  
Author(s):  
Lucia Balagova ◽  
Jan Graban ◽  
Agnesa Puhova ◽  
Daniela Jezova

AbstractCatecholamine effects via β3-adrenergic receptors are important for the metabolism of the adipose tissue. Physical exercise is a core component of antiobesity regimens. We have tested the hypothesis that voluntary wheel running results in enhancement of β3-adrenergic receptor gene expression in the white and brown adipose tissues. The secondary hypothesis is that dietary tryptophan depletion modifies metabolic effects of exercise. Male Sprague-Dawley rats were assigned for sedentary and exercise groups with free access to running wheels for 3 weeks. All animals received normal control diet for 7 days. Both groups were fed either by low tryptophan (0.04%) diet or by control diet (0.2%) for next 2 weeks. The β3-adrenergic receptor mRNA levels in response to running increased in the retroperitoneal and epididymal fat pads. The gene expression of uncoupling protein-1 (UCP-1) was increased in the brown, while unchanged in the white fat tissues. Unlike control animals, the rats fed by low tryptophan diet did not exhibit a reduction of the white adipose tissue mass. Tryptophan depletion resulted in enhanced concentrations of plasma aldosterone and corticosterone, but had no influence on exercise-induced adrenal hypertrophy. No changes in β3-adrenergic receptor and cell proliferation measured by 5-bromo-2′-deoxyuridine incorporation in left heart ventricle were observed. The reduced β3-adrenergic receptor but not enhanced uncoupling protein-1 gene expression supports the hypothesis on hypoactive brown adipose tissue during exercise. Reduction in dietary tryptophan had no major influence on the exercise-induced changes in the metabolic parameters measured.


2019 ◽  
Vol 20 (21) ◽  
pp. 5377 ◽  
Author(s):  
Martina La Spina ◽  
Eva Galletta ◽  
Michele Azzolini ◽  
Saioa Gomez Zorita ◽  
Sofia Parrasia ◽  
...  

Obesity and related comorbidities are a major health concern. The drugs used to treat these conditions are largely inadequate or dangerous, and a well-researched approach based on nutraceuticals would be highly useful. Pterostilbene (Pt), i.e., 3,5-dimethylresveratrol, has been reported to be effective in animal models of obesity, acting on different metabolic pathways. We investigate here its ability to induce browning of white adipose tissue. Pt (5 µM) was first tested on 3T3-L1 mature adipocytes, and then it was administered (352 µmol/kg/day) to mice fed an obesogenic high-fat diet (HFD) for 30 weeks, starting at weaning. In the cultured adipocytes, the treatment elicited a significant increase of the levels of Uncoupling Protein 1 (UCP1) protein—a key component of thermogenic, energy-dissipating beige/brown adipocytes. In vivo administration antagonized weight increase, more so in males than in females. Analysis of inguinal White Adipose Tissue (WAT) revealed a trend towards browning, with significantly increased transcription of several marker genes (Cidea, Ebf2, Pgc1α, PPARγ, Sirt1, and Tbx1) and an increase in UCP1 protein levels, which, however, did not achieve significance. Given the lack of known side effects of Pt, this study strengthens the candidacy of this natural phenol as an anti-obesity nutraceutical.


2019 ◽  
Vol 33 (5) ◽  
pp. 5876-5886 ◽  
Author(s):  
Yan Xiong ◽  
Zihuan Wu ◽  
Bin Zhang ◽  
Chao Wang ◽  
Fengyi Mao ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2164 ◽  
Author(s):  
Woo Yong Park ◽  
Seong-Kyu Choe ◽  
Jinbong Park ◽  
Jae-Young Um

The alteration of white adipose tissue (WAT) “browning”, a change of white into beige fat, has been considered as a new therapeutic strategy to treat obesity. In this study, we investigated the browning effect of black raspberry (Rubus coreanus Miquel) using in vitro and in vivo models. Black raspberry water extract (BRWE) treatment inhibited lipid accumulation in human mesenchymal stem cells (hMSCs) and zebrafish. To evaluate the thermogenic activity, BRWE was orally administered for 2 weeks, and then, the mice were placed in a 4 °C environment. As a result, BRWE treatment increased rectal temperature and inguinal WAT (iWAT) thermogenesis by inducing the expression of beige fat specific markers such as PR domain zinc-finger protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and t-box protein 1 (TBX1) in cold-exposed mice. Furthermore, ellagic acid (EA), a constituent of BRWE, markedly promoted beige specific markers: UCP1, PGC1α, TBX1, and nuclear respiratory factor 1 in beige differentiation media (DM)-induced 3T3-L1 adipocytes. Our findings indicate that BRWE can promote beige differentiation/activation, and EA is the active compound responsible for such effect. Thus, we suggest the nature-derived agents BRWE and EA as potential agents for obesity treatment.


1989 ◽  
Vol 259 (2) ◽  
pp. 555-559 ◽  
Author(s):  
M Giralt ◽  
L Casteilla ◽  
O Viñas ◽  
T Mampel ◽  
R Iglesias ◽  
...  

Iodothyronine 5'-deiodinase activity appears to be a type I enzyme in bovine brown adipose tissue, on the basis of its high Km for 3,3',5'-tri-iodothyronine (‘reverse T3’) (in the micromolar range) and sensitivity to propylthiouracil inhibition. This enzyme activity is already detectable in perirenal adipose tissue of bovine fetuses in the second month of gestation, reaches peak values around the seventh month of fetal life, declines before birth, becomes lower after parturition and finally undetectable in the adult cow. Iodothyronine 5'-deiodinase activity is present in the pericardic, peritoneal and intermuscular adipose depots of the neonatal calf, but it is always undetectable in the subcutaneous adipose tissue. It is concluded that iodothyronine 5'-deiodinase is a specific feature of brown fat in the bovine species that is not shared by white adipose tissue. white adipose tissue. Peak values of 5'-deiodinating activity appear as an early event in the prenatal differentiation programme of bovine brown-fat cells as they occur when uncoupling-protein-gene expression first starts.


2008 ◽  
Vol 199 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Andrea Anedda ◽  
Eduardo Rial ◽  
M Mar González-Barroso

Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and β-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.


2006 ◽  
Vol 27 (3) ◽  
pp. 282-294 ◽  
Author(s):  
P. Christopher LaRosa ◽  
Jess Miner ◽  
Yuannan Xia ◽  
You Zhou ◽  
Steve Kachman ◽  
...  

A combined histological and microarray analysis of the white adipose tissue (WAT) of mice fed trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) was performed to better define functional responses. Mice fed t10c12 CLA for 14 days lost 85% of WAT mass, 95% of adipocyte lipid droplet volume, and 15 or 47% of the number of adipocytes and total cells, respectively. Microarray profiling of replicated pools ( n = 2 per day × diet) of control and treated mice ( n = 140) at seven time points after 1–17 days of t10c12 CLA feeding found between 2,682 and 4,216 transcript levels changed by twofold or more. Transcript levels for genes involved in glucose and fatty acid import or biosynthesis were significantly reduced. Highly expressed transcripts for lipases were significantly reduced but still abundant. Increased levels of mRNAs for two key thermogenesis proteins, uncoupling protein 1 and carnitine palmitoyltransferase 1, may have increased energy expenditures. Significant reductions of mRNAs for major adipocyte regulatory factors, including peroxisome proliferator activated receptor-γ, sterol regulatory binding protein 1, CAAT/enhancer binding protein-α, and lipin 1 were correlated with the reduced transcript levels for key metabolic pathways in the WAT. A prolific inflammation response was indicated by the 2- to 100-fold induction of many cytokine transcripts, including those for IL-6, IL-1β, TNF ligands, and CXC family members, and an increased density of macrophages. The mRNA changes suggest that a combination of cell loss, increased energy expenditure, and residual transport of lipids out of the adipocytes may account for the cumulative mass loss observed.


2015 ◽  
Vol 112 (45) ◽  
pp. 14006-14011 ◽  
Author(s):  
Yifei Miao ◽  
Wanfu Wu ◽  
Yubing Dai ◽  
Laure Maneix ◽  
Bo Huang ◽  
...  

The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.


2020 ◽  
Vol 52 (7S) ◽  
pp. 920-920
Author(s):  
Elias Maurice Malek ◽  
Caitlin K. Reynolds ◽  
Charli D. Aguilar ◽  
Graham R. McGinnis

Sign in / Sign up

Export Citation Format

Share Document