scholarly journals Small ribonucleoprotein particle protein SmD3 governs the homeostasis of germline stem cells and the crosstalk between the spliceosome and ribosome signals in Drosophila

2019 ◽  
Vol 33 (7) ◽  
pp. 8125-8137 ◽  
Author(s):  
Jun Yu ◽  
Xiaojin Luan ◽  
Yidan Yan ◽  
Chen Qiao ◽  
Yuanyuan Liu ◽  
...  
2020 ◽  
Vol 64 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Ben L. Carty ◽  
Elaine M. Dunleavy

Abstract Asymmetric cell division (ACD) produces daughter cells with separate distinct cell fates and is critical for the development and regulation of multicellular organisms. Epigenetic mechanisms are key players in cell fate determination. Centromeres, epigenetically specified loci defined by the presence of the histone H3-variant, centromere protein A (CENP-A), are essential for chromosome segregation at cell division. ACDs in stem cells and in oocyte meiosis have been proposed to be reliant on centromere integrity for the regulation of the non-random segregation of chromosomes. It has recently been shown that CENP-A is asymmetrically distributed between the centromeres of sister chromatids in male and female Drosophila germline stem cells (GSCs), with more CENP-A on sister chromatids to be segregated to the GSC. This imbalance in centromere strength correlates with the temporal and asymmetric assembly of the mitotic spindle and potentially orientates the cell to allow for biased sister chromatid retention in stem cells. In this essay, we discuss the recent evidence for asymmetric sister centromeres in stem cells. Thereafter, we discuss mechanistic avenues to establish this sister centromere asymmetry and how it ultimately might influence cell fate.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0213327 ◽  
Author(s):  
Deepthy Francis ◽  
Bhavna Chanana ◽  
Beatriz Fernandez ◽  
Benjamin Gordon ◽  
Tiffany Mak ◽  
...  

2019 ◽  
Vol 31 (8) ◽  
pp. 1315 ◽  
Author(s):  
Daguia Zambe John Clotaire ◽  
Yudong Wei ◽  
Xiuwei Yu ◽  
Tamgue Ousman ◽  
Jinlian Hua

Promyelocytic leukaemia zinc finger (Plzf), also known as zinc finger and BTB domain containing 16 (ZBTB16) or zinc-finger protein 145 (ZFP145), is a critical zinc finger protein of male germline stem cells (mGSCs). Multiple lines of evidence indicate that Plzf has a central role in the development, differentiation and maintenance of many stem cells, including mGSCs, and Plzf has been validated as an essential transcription factor for mammalian testis development and spermatogenesis. This review summarises current literature focusing on the significance of Plzf in maintaining and regulating self-renewal and differentiation of mGSCs, especially goat mGSCs. The review summarises evidence of the specificity of Plzf expression in germ cell development stage, the known functions of Plzf and the microRNA-mediated mechanisms that control Plzf expression in mGSCs.


2010 ◽  
Vol 17 (4) ◽  
pp. 498-505 ◽  
Author(s):  
Antonin Bukovsky

AbstractAt the beginning of the last century, reproductive biologists have discussed whether in mammalian species the fetal oocytes persist or are replaced by neo-oogenesis during adulthood. Currently the prevailing view is that neo-oogenesis is functional in lower vertebrates but not in mammalian species. However, contrary to the evolutionary rules, this suggests that females of lower vertebrates have a better opportunity to provide healthy offspring compared to mammals with oocytes subjected to environmental threats for up to several decades. During the last 15 years, a new effort has been made to determine whether the oocyte pool in adult mammals is renewed as well. Most recently, Ji Wu and colleagues reported a production of offspring from female germline stem cells derived from neonatal and adult mouse ovaries. This indicates that both neonatal and adult mouse ovaries carry stem cells capable of producing functional oocytes. However, it is unclear whether neo-oogenesis from ovarian somatic stem cells is physiologically involved in follicular renewal and why menopause occurs. Here we review observations that indicate an involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from ovarian stem cells during the prime reproductive period and propose why menopause occurs in spite of persisting ovarian stem cells.


2012 ◽  
Vol 45 (4) ◽  
pp. 287-298 ◽  
Author(s):  
Y. Hu ◽  
Y. Bai ◽  
Z. Chu ◽  
J. Wang ◽  
L. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document