scholarly journals GSK3 inhibitor-BIO regulates proliferation of female germline stem cells from the postnatal mouse ovary

2012 ◽  
Vol 45 (4) ◽  
pp. 287-298 ◽  
Author(s):  
Y. Hu ◽  
Y. Bai ◽  
Z. Chu ◽  
J. Wang ◽  
L. Wang ◽  
...  
Author(s):  
Xiaoyong Li ◽  
Geng Tian ◽  
Ji Wu

Circular RNAs (circRNAs) play important roles in the self-renewal of stem cells. However, their significance and regulatory mechanisms in female germline stem cells (FGSCs) are largely unknown. Here, we identified an N6-methyladenosine (m6A)-modified circRNA, circGFRα1, which is highly abundant in mouse ovary and stage-specifically expressed in mouse FGSC development. Knockdown of circGFRα1 in FGSCs significantly reduced their self-renewal. In contrast, overexpression of circGFRα1 enhanced FGSC self-renewal. Mechanistically, circGFRα1 promotes FGSC self-renewal by acting as a competing endogenous RNA (ceRNA) that sponges miR-449, leading to enhanced GFRα1 expression and activation of the glial cell derived neurotrophic factor (GDNF) signaling pathway. Furthermore, circGFRα1 acts as a ceRNA based on METTL14-mediated cytoplasmic export through the GGACU motif. Our study should help to understand the mechanisms regulating germ cell development, add new evidence on the mechanism of action of circRNA, and deepen our understanding of the development of FGSCs.


2010 ◽  
Vol 17 (4) ◽  
pp. 498-505 ◽  
Author(s):  
Antonin Bukovsky

AbstractAt the beginning of the last century, reproductive biologists have discussed whether in mammalian species the fetal oocytes persist or are replaced by neo-oogenesis during adulthood. Currently the prevailing view is that neo-oogenesis is functional in lower vertebrates but not in mammalian species. However, contrary to the evolutionary rules, this suggests that females of lower vertebrates have a better opportunity to provide healthy offspring compared to mammals with oocytes subjected to environmental threats for up to several decades. During the last 15 years, a new effort has been made to determine whether the oocyte pool in adult mammals is renewed as well. Most recently, Ji Wu and colleagues reported a production of offspring from female germline stem cells derived from neonatal and adult mouse ovaries. This indicates that both neonatal and adult mouse ovaries carry stem cells capable of producing functional oocytes. However, it is unclear whether neo-oogenesis from ovarian somatic stem cells is physiologically involved in follicular renewal and why menopause occurs. Here we review observations that indicate an involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from ovarian stem cells during the prime reproductive period and propose why menopause occurs in spite of persisting ovarian stem cells.


2018 ◽  
Vol 52 (1) ◽  
pp. e12530 ◽  
Author(s):  
Kang Zou ◽  
Jian Wang ◽  
Haiwei Bi ◽  
Yabin Zhang ◽  
Xueli Tian ◽  
...  

2019 ◽  
Vol 31 ◽  
pp. 14-19 ◽  
Author(s):  
Yuto Yoshinari ◽  
Yoshitomo Kurogi ◽  
Tomotsune Ameku ◽  
Ryusuke Niwa

PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e62660 ◽  
Author(s):  
Ten-Tsao Wong ◽  
Abraham Tesfamichael ◽  
Paul Collodi

2018 ◽  
Vol 92 (4) ◽  
pp. 1581-1591 ◽  
Author(s):  
Xiaoqin Zhu ◽  
Geng G. Tian ◽  
Baoli Yu ◽  
Yanzhou Yang ◽  
Ji Wu

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zezheng Pan ◽  
Mengli Sun ◽  
Xia Liang ◽  
Jia Li ◽  
Fangyue Zhou ◽  
...  

The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years.


2018 ◽  
Vol 27 (8) ◽  
pp. 1195-1202 ◽  
Author(s):  
Lin Hou ◽  
Jian Wang ◽  
Xinyue Li ◽  
Hu Wang ◽  
Guishu Liu ◽  
...  

Pigs share many anatomical and physiological features with humans, offering a unique and viable model for biomedical research. Although porcine female germline stem cells (FGSCs) were identified in the juvenile ovary, no reports described the isolation and purification of FGSCs from the pig at sexual maturity. Here, we isolated, purified, and cultured FGSCs from porcine ovaries at sexual maturity. Furthermore, we established and characterized the porcine FGSC (pFGSC) lines. In addition, we found that pFGSC lines could differentiate into oocytes when injection into tissue grafts, including human ovarian tissues. The results show that FGSCs exist in ovaries of Banna mini-pigs at juvenile and sexually maturity. These findings have implications in animal biotechnology applications and regeneration medicine.


Stem Cells ◽  
2019 ◽  
Vol 37 (8) ◽  
pp. 1095-1107 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Rui Wei ◽  
Yizhuo Sun ◽  
Qin Xia ◽  
Wenhai Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document