scholarly journals Suppressed ER‐associated degradation by intraglomerular cross talk between mesangial cells and podocytes causes podocyte injury in diabetic kidney disease

2020 ◽  
Vol 34 (11) ◽  
pp. 15577-15590
Author(s):  
Daisuke Fujimoto ◽  
Takashige Kuwabara ◽  
Yusuke Hata ◽  
Shuro Umemoto ◽  
Tomoko Kanki ◽  
...  
2015 ◽  
Vol 308 (4) ◽  
pp. F287-F297 ◽  
Author(s):  
Jia Fu ◽  
Kyung Lee ◽  
Peter Y. Chuang ◽  
Zhihong Liu ◽  
John Cijiang He

Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mitsuo Kato ◽  
Maryam Abdollahi ◽  
Ragadeepthi Tunduguru ◽  
Walter Tsark ◽  
Zhuo Chen ◽  
...  

AbstractDiabetic kidney disease (DKD) is a major complication of diabetes. Expression of members of the microRNA (miRNA) miR-379 cluster is increased in DKD. miR-379, the most upstream 5′-miRNA in the cluster, functions in endoplasmic reticulum (ER) stress by targeting EDEM3. However, the in vivo functions of miR-379 remain unclear. We created miR-379 knockout (KO) mice using CRISPR-Cas9 nickase and dual guide RNA technique and characterized their phenotype in diabetes. We screened for miR-379 targets in renal mesangial cells from WT vs. miR-379KO mice using AGO2-immunopreciptation and CLASH (cross-linking, ligation, sequencing hybrids) and identified the redox protein thioredoxin and mitochondrial fission-1 protein. miR-379KO mice were protected from features of DKD as well as body weight loss associated with mitochondrial dysfunction, ER- and oxidative stress. These results reveal a role for miR-379 in DKD and metabolic processes via reducing adaptive mitophagy. Strategies targeting miR-379 could offer therapeutic options for DKD.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhigui Wu ◽  
Wenxian Yin ◽  
Mengqi Sun ◽  
Yuankai Si ◽  
Xiaoxiao Wu ◽  
...  

Objective. To explore the role and mechanism of BKCa in diabetic kidney disease. Methods. Rat mesangial cells (MCs) HBZY-1 were cultured with high glucose to simulate the high-glucose environment of diabetic kidney disease in vivo. The effects of large conductance calcium-activated potassium channel (BKCa) on proliferation, migration, and apoptosis of HBZY-1 cells were observed. The contents of transforming growth factor beta 1 (TGF-β1), Smad2/3, collagen IV (Col IV), and fibronectin (FN) in the extracellular matrix were also observed. Results. High glucose significantly damaged HBZY-1 cells, which enhanced the ability of cell proliferation, migration, and apoptosis, and increased the secretion of Col IV and FN. Inhibition of BKCa and TGF-β1/Smad2/3 signaling pathways can inhibit the proliferation, migration, and apoptosis of HBZY-1 cells and suppress the secretion of Col IV and FN. The effect of excitation is the opposite. Conclusions. BKCa regulates mesangial cell proliferation, migration, apoptosis, and secretion of Col IV and FN and is associated with TGF-β1/Smad2/3 signaling pathway.


2019 ◽  
Vol 59 ◽  
pp. 13-23 ◽  
Author(s):  
Yipeng Liu ◽  
Hong Su ◽  
Chaoqun Ma ◽  
Dong Ji ◽  
Xiaoli Zheng ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhenzhen Lu ◽  
Yifei Zhong ◽  
Wangyi Liu ◽  
Ling Xiang ◽  
Yueyi Deng

Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes and is one of the main causes of end-stage renal disease (ESRD) in many countries. The pathological features of DKD are the hypertrophy of mesangial cells, apoptosis of podocytes, glomerular basement membrane (GBM) thickening, accumulation of extracellular matrix (ECM), glomerular sclerosis, and tubulointerstitial fibrosis. The etiology of DKD is very complicated and many factors are involved, such as genetic factors, hyperglycemia, hypertension, hyperlipidemia, abnormalities of renal hemodynamics, and metabolism of vasoactive substances. Although some achievements have been made in the exploration of the pathogenesis of DKD, the currently available clinical treatment methods are still not completely effective in preventing the progress of DKD to ESRD. CHM composed of natural products has traditionally been used for symptom relief, which may offer new insights into therapeutic development of DKD. We will summarize the progress of Chinese herbal medicine (CHM) in the treatment of DKD from two aspects. In clinical trials, the Chinese herbal formulas were efficacy and safety confirmed by the randomized controlled trials. In terms of experimental research, studies provided evidence for the efficacy of CHM from the perspectives of balancing metabolic disorders, reducing inflammatory response and oxidative stress, antifibrosis, protecting renal innate cells, and regulating microRNA and metabolism. CHM consisting of different ingredients may play a role in synergistic interactions and multiple target points in the treatment of DKD.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Igor Kravets ◽  
Sandeep K Mallipattu

Abstract Diabetic kidney disease (DKD) is an important public health problem. Podocyte injury is a central event in the mechanism of DKD development. Podocytes are terminally differentiated, highly specialized glomerular visceral epithelial cells critical for the maintenance of the glomerular filtration barrier. Although potential mechanisms by which diabetic milieu contributes to irreversible loss of podocytes have been described, identification of markers that prognosticate either the development of DKD or the progression to end-stage kidney disease (ESKD) have only recently made it to the forefront. Currently, the most common marker of early DKD is microalbuminuria; however, this marker has significant limitations: not all diabetic patients with microalbuminuria will progress to ESKD and as many as 30% of patients with DKD have normal urine albumin levels. Several novel biomarkers indicating glomerular or tubular damage precede microalbuminuria, suggesting that the latter develops when significant kidney injury has already occurred. Because podocyte injury plays a key role in DKD pathogenesis, identification of markers of early podocyte injury or loss may play an important role in the early diagnosis of DKD. Such biomarkers in the urine include podocyte-released microparticles as well as expression of podocyte-specific markers. Here, we review the mechanisms by which podocyte injury contributes to DKD as well as key markers that have been recently implicated in the development and/or progression of DKD and might serve to identify individuals that require earlier preventative care and treatment in order to slow the progression to ESKD.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeong Suk Kang ◽  
Seung Joo Lee ◽  
Ji-Hye Lee ◽  
Ji-Hee Kim ◽  
Seung Seob Son ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Xinyun Chen ◽  
Qinghua Yin ◽  
Liang Ma ◽  
Ping Fu

: Considerable evidence has proved that disturbed cholesterol metabolism played a crucial role in diabetic kidney disease. Besides, massive cholesterol depositions were found in intrinsic renal cells of diabetic kidney disease patients and animal models, causing cytotoxicity, and affecting renal function. Statins could alleviate cholesterol depositions, podocyte injury and microalbuminuria of diabetic kidney disease. In the review, we summarized the process of disturbed cholesterol metabolism and discussed how it induced kidney dysfunction in diabetic kidney disease.


Sign in / Sign up

Export Citation Format

Share Document