Improved Contractility and Coronary Flow in Isolated Hearts after 1-Day Hypothermic Preservation with Isoflurane Is Not Dependent on KATPChannel Activation 

1998 ◽  
Vol 88 (1) ◽  
pp. 233-244 ◽  
Author(s):  
David F. Stowe ◽  
Satoshi Fujita ◽  
Zeljko J. Bosnjak

Background Isoflurane protects against reperfusion injury in isolated hearts when given before, during, and initially after hypoxia or ischemia and aids in preconditioning hearts if given before ischemia. The aims of the current study were to determine if isoflurane is cardioprotective during 1-day, severe hypothermic perfusion and if a mechanism of protection is K(ATP) channel activation. Methods Guinea pig hearts (n = 60) were isolated, perfused with Kreb's solution initially at 37 degrees C, and assigned to either a nontreated warm, time control group or one of five cold-treated groups: drug-free cold control, 1.3% isoflurane, 1.3% isoflurane plus glibenclamide (4 microM), 2.6% isoflurane, or 2.6% isoflurane plus glibenclamide. Isoflurane and glibenclamide were given 20 min before hypothermia, during low-flow hypothermia (3.8 degrees C) for 22 h, and for 30 min after rewarming to 37 degrees C. Heart rate, left ventricular pressure, %O2 extraction, and coronary flow were measured continuously, and responses to epinephrine, adenosine, 5-hydroxytryptamine, and nitroprusside were examined before and after hypothermia. Results Each group had similar initial left ventricular pressures, coronary flows, and responses to adenosine, 5-hydroxytryptamine, and nitroprusside. Before hypothermia, isoflurane with or without glibenclamide increased coronary flow while decreasing left ventricular pressure and %O2 extraction. After hypothermia, left ventricular pressure and coronary flow were reduced in all cold groups but least reduced in isoflurane-treated groups. During normothermic perfusion after isoflurane and glibenclamide, left ventricular pressure, coronary flow, %O2 extraction, and flow responses to adenosine, 5-hydroxytryptamine, and nitroprusside were similarly improved in isoflurane and isoflurane-plus-glibenclamide groups over the cold control group but not to levels observed in the warm-time control group. Conclusion Isoflurane, like halothane, given before, during, and initially after hypothermia markedly improved but did not restore cardiac perfusion and function. Protective effects of isoflurane were not concentration dependent and not inhibited by the K(ATP) channel blocker glibenclamide. Volatile anesthetics have novel cardioprotective effects when given during long-term severe hypothermia.

2019 ◽  
Author(s):  
Hedvig Takács

In this work, we used the isolated, Langendorff perfused heart model for arrhythmia investigations, and the data of the arrhythmia analysis served for clarifying and characterising the physiology of the model and also, to validate arrhythmia definitions. In our first investigation we examined the relationship between ventricular rhythm and coronary flow autoregulation in Langendorff perfused guinea pig hearts. It is a well-known fact, that heart rate affects coronary flow, but the mechanism is complex, especially in experimental settings. We examined whether ventricular irregularity influences coronary flow independently of heart rate. According to our results, during regular rhythm, left ventricular pressure exceeded perfusion pressure and prevented coronary perfusion at peak systole. However, ventricular irregularity significantly increased the number of beats in which left ventricular pressure remained below perfusion pressure, facilitating coronary perfusion. We found that in isolated hearts, cycle length irregularity increases the slope of the positive linear correlation between mean ventricular rate and coronary flow via producing beats in which left ventricular pressure remains below perfusion pressure. This means that changes in rhythm have the capacity to influence coronary flow independently of heart rate in isolated hearts perfused at constant pressure. In our second investigation we examined whether the arrhythmia definitions of Lambeth Conventions I (LC I) and Lambeth Conventions II (LC II) yield the same qualitative results and whether LC II improves inter-observer agreement. Data obtained with arrhythmia definitions of LC I and LC II were compared within and between two independent observers. Applying ventricular fibrillation (VF) definition of LC II significantly increased VF incidence and reduced VF onset time irrespective of treatment by detecting ‘de novo’ VF episodes. Using LC II reduced the number of ventricular tachycardia (VT) episodes and simultaneously increased the number of VF episodes, and thus, LC II masked the significant antifibrillatory effects of flecainide and the high K+ concentration. When VF incidence was tested, a very strong interobserver agreement was found according to LC I, whereas using VF definition of LC II reduced inter-observer agreement. It is concluded that LC II shifts some tachyarrhythmias from VT to VF class. VF definition of LC II may change the conclusion of pharmacological, physiological and pathophysiological arrhythmia investigations and may reduce inter-observer agreement.


2007 ◽  
Vol 293 (1) ◽  
pp. H895-H901 ◽  
Author(s):  
David F. Stowe ◽  
Amadou K. S. Camara ◽  
James S. Heisner ◽  
Mohammed Aldakkak ◽  
David R. Harder

There is no suitable solution to preserve hearts for longer than 5 h between donor explant and recipient implant. Lifor is a fully artificial preservation medium containing both a nonprotein oxygen and nutrient carrier (nanoparticles) and cellular nutrients, including amino acids and sugars. We proposed that recirculated Lifor solution would satisfactorily preserve guinea pig isolated hearts perfused at low flow with no added O2at room temperature for 10 h. Hearts were isolated from 21 guinea pigs and perfused with Krebs-Ringer (KR) solution (97% O2and 3% CO2) at 37°C. Heart rate, inflow and outflow O2tension, coronary flow, left ventricular pressure (LVP), and maximal and minimal rate of change in LVP (dLVP/d t) were measured. After baseline measurements, hearts were perfused with recirculated Lifor or ViaSpan equilibrated with room air at 15% of control flow at 26°C for 10 h. Hearts were then perfused at 100% flow with KR for 2 h at 37°C. A time control (untreated) group was perfused only with KR solution for 15 h. Lifor arrested and protected hearts against diastolic contracture and maintained a low O2extraction. Compared with time controls, Lifor led to a higher developed LVP and coronary flow; %O2extraction and cardiac efficiency were similar between these two groups. Hearts similarly treated with ViaSpan exhibited diastolic contracture and lower %O2extraction during treatment and, upon reperfusion with KR, exhibited continued diastolic contracture, no return of heart rate or contractility, low coronary flow, low %O2extraction, and marked infarction. For long-term cardiac protection, a suitable preservation solution recirculated at low flow and room temperature without supplemental O2would reduce the support apparatus required for transport. Lifor was far superior to ViaSpan in meeting these requirements.


1999 ◽  
Vol 91 (3) ◽  
pp. 701-701 ◽  
Author(s):  
Enis Novalija ◽  
Satoshi Fujita ◽  
John P. Kampine ◽  
David F. Stowe

Background Like ischemic preconditioning, certain volatile anesthetics have been shown to reduce the magnitude of ischemia/ reperfusion injury via activation of K+ adenosine triphosphate (ATP)-sensitive (K(ATP)) channels. The purpose of this study was (1) to determine if ischemic preconditioning (IPC) and sevoflurane preconditioning (SPC) increase nitric oxide release and improve coronary vascular function, as well as mechanical and electrical function, if given for only brief intervals before global ischemia of isolated hearts; and (2) to determine if K(ATP) channel antagonism by glibenclamide (GLB) blunts the cardioprotective effects of IPC and SPC. Methods Guinea pig hearts were isolated and perfused with Krebs-Ringer's solution at 55 mm Hg and randomly assigned to one of seven groups: (1) two 2-min total coronary occlusions (preconditioning, IPC) interspersed with 5 min of normal perfusion; (2) two 2-min occlusions interspersed with 5 min of perfusion while perfusing with GLB (IPC+GLB); (3) SPC (3.5%) for two 2-min periods; (4) SPC+GLB for two 2-min periods; (5) no treatment before ischemia (control [CON]); (6) CON+GLB; and (7) no ischemia (time control). Six minutes after ending IPC or SPC, hearts of ischemic groups were subjected to 30 min of global ischemia and 75 min of reperfusion. Left-ventricular pressure, coronary flow, and effluent NO concentration ([NO]) were measured. Flow and NO responses to bradykinin, and nitroprusside were tested 20-30 min before ischemia or drug treatment and 30-40 min after reperfusion. Results After ischemia, compared with before (percentage change), left-ventricular pressure and coronary flow, respectively, recovered to a greater extent (P<0.05) after IPC (42%, 77%), and treatment with SPC (45%, 76%) than after CON (30%, 65%), IPC+GLB (24%, 64%), SPC+GLB (20%, 65%), and CON+GLB (28%, 64%). Bradykinin and nitroprusside increased [NO] by 30+/-5 (means +/- SEM) and 29+/-4 nM, respectively, averaged for all groups before ischemia. [NO] increased by 26+/-6 and 27+/-7 nM, respectively, in SPC and IPC groups after ischemia, compared with an average [NO] increase of 8+/-5 nM (P<0.01) after ischemia in CON and each of the three GLB groups. Flow increases to bradykinin and nitroprusside were also greater after SPC and IPC. Conclusions Preconditioning with sevoflurane, like IPC, improves not only postischemic contractility, but also basal flow, bradykinin and nitroprusside-induced increases in flow, and effluent [NO] in isolated hearts. The protective effects of both SPC and IPC are reversed by K(ATP) channel antagonism.


1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


2012 ◽  
Vol 13 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Kulwinder Singh ◽  
Kuldeepak Sharma ◽  
Manjeet Singh ◽  
PL Sharma

Hypothesis: This study was designed to investigate the cardio-renal protective effect of AVE-0991, a non-peptide Mas-receptor agonist, and A-779, a Mas-receptor antagonist, in diabetic rats. Materials and methods: Wistar rats treated with streptozotocin (50 mg/kg, i.p., once), developed diabetes mellitus after 1 week. After 8 weeks, myocardial functions were assessed by measuring left ventricular developed pressure (LVDP), rate of left ventricular pressure development (d p/d tmax), rate of left ventricular pressure decay (d p/d tmin) and left ventricular end diastolic pressure (LVEDP) on an isolated Langendorff’s heart preparation. Further, mean arterial blood pressure (MABP) was measured by using the tail-cuff method. Assessment of renal functions and lipid profile was carried out using a spectrophotometer. Results: The administration of streptozotocin to rats produced persistent hyperglycaemia, dyslipidaemia and hypertension which consequently produced cardiac and renal dysfunction in 8 weeks. AVE0991 treatment produced cardio-renal protective effects, as evidenced by a significant increase in LVDP, d p/d tmax, d p/d tmin and a significant decrease in LVEDP, BUN, and protein urea. Further, AVE-0991 treatment for the first time has been shown to reduce dyslipidaemia and produced antihyperglycaemic activity in streptozotocin-treated rats. However, MABP and creatinine clearance remained unaffected with AVE-0991 treatment. Conclusions: AVE-0991 produced cardio-renal protection possibly by improving glucose and lipid metabolism in diabetic rats, independent of its blood pressure lowering action.


1996 ◽  
Vol 271 (5) ◽  
pp. H1884-H1892 ◽  
Author(s):  
D. F. Stowe ◽  
B. M. Graf ◽  
S. Fujita ◽  
G. J. Gross

Bimakalim (Bim), an opener of ATP-sensitive K+ (KATP) channels, was given alone or with 2,3-butanedione monoxime (BDM), a reversible uncoupler of contractility, to protect myocardial function during 1 day of hypothermia. Left ventricular pressure (LVP), coronary flow (CF), percent O2 extraction (%O2E), and cardiac efficiency were measured in 96 isolated, perfused guinea pig hearts divided into seven groups: 1) cold control (no drugs); 2) BDM; 3) Bim; 4) BDM + Bim; 5) BDM + glibenclamide (Glib, a blocker of KATP channels); 6) BDM + Bim + Glib; and 7) time control (6 h warm perfusion only). Drugs were given before, during, and initially after 22 h of low CF at 3.8 degrees C. At 26 h (cold groups) or 4 h (warm group) LVP (mmHg; means +/- SE) was similar for time control (94 +/- 4) and BDM + Bim (92 +/- 4) groups, lower and equivalent in the BDM (65 +/- 7) and BDM + Bim + Glib (64 +/- 7) groups, but LVP was higher than in the Bim group (46 +/- 3), and lowest in the cold control (30 +/- 8) group. In addition, only in the BDM + Bim group were basal CF, %O2E, and cardiac efficiency returned to values obtained in the time control group. Epinephrine increased LVP to that of the time control (106 +/- 3) group only in the BDM + Bim group (106 +/- 3) after hypothermia, and CF increases with adenosine, 5-hydroxytryptamine, and nitroprusside were similar to that of the time control group only in the BDM + Bim group after hypothermia. All of the effects of Bim were reversed by Glib. These results indicate that Bim, given with BDM, effectively preserves myocardial function and metabolism as well as inotropic and vasodilatory reserve during long-term hypothermic preservation as if the 1-day hypothermic state had not been instituted. Because the beneficial effects of Bim are blocked by Glib, the protective effect of Bim likely results from maintained KATP channel opening. Treatment with exogenous KATP openers may prove useful in preserving cardiac function in the transplanted heart.


2003 ◽  
Vol 99 (2) ◽  
pp. 385-391 ◽  
Author(s):  
Leo G. Kevin ◽  
Peter Katz ◽  
Amadou K. S. Camara ◽  
Enis Novalija ◽  
Matthias L. Riess ◽  
...  

Background Anesthetic preconditioning (APC) is protective for several aspects of cardiac function and structure, including left ventricular pressure, coronary flow, and infarction. APC may be protective, however, only if the duration of ischemia is within a certain, as yet undefined range. Brief ischemia causes minimal injury, and APC would be expected to provide little benefit. Conversely, very prolonged ischemia would ultimately cause serious injury with or without APC. Previous investigations used a constant ischemic time as the independent variable to assess ischemia-induced changes in dependent functional and structural variables. The purpose of the study was to define the critical limits of efficacy of APC by varying ischemic time. Methods Guinea pig hearts (Langendorff preparation; n = 96) underwent pretreatment with sevoflurane (APC) or no treatment (control), before global ischemia and 120 min reperfusion. Ischemia durations were 20, 25, 30, 35, 40, and 45 min. Results At 120 min reperfusion, developed (systolic-diastolic) left ventricular pressure was increased by APC compared with control for ischemia durations of 25-40 min. Infarction was decreased by APC for ischemia durations of 25-40 min, but not 20 or 45 min. APC improved coronary flow and vasodilator responses for all ischemia durations longer than 25 min, and decreased ventricular fibrillation on reperfusion for ischemia durations longer than 30 min. Conclusions Although APC protects against vascular dysfunction and dysrhythmias after prolonged ischemia, protection against contractile dysfunction and infarction in this model is restricted to a range of ischemia durations of 25-40 min. These results suggest that APC may be effective in a subset of patients who have cardiac ischemia of intermediate duration.


1992 ◽  
Vol 77 (2) ◽  
pp. 397-400 ◽  
Author(s):  
D Gattullo ◽  
RJ Linden ◽  
G Losano ◽  
P Pagliaro ◽  
N Westerhof

2019 ◽  
Vol 97 (9) ◽  
pp. 850-856 ◽  
Author(s):  
M. Djuric ◽  
T. Nikolic Turnic ◽  
S. Kostic ◽  
K. Radonjic ◽  
J. Jeremic ◽  
...  

It has been assumed that the cardioprotective effects of propofol are due to its non-anesthetic pleiotropic cardiac and vasodilator effects, in which gasotransmitters (NO, H2S, and CO) as well as calcium influx could be involved. The study on isolated rat heart was performed using 4 experimental groups (n = 7 in each): (1) bolus injection of propofol (100 mg/kg body mass, i.p.); (2) L-NAME (NO synthase inhibitor, 60 mg/kg body mass, i.p.) + propofol; (3) DL-PAG (H2S synthase inhibitor, 50 mg/kg body mass, i.p.) + propofol; (4) ZnPPIX (CO synthase inhibitor, 50 μmol/kg body mass, i.p.) + propofol. Before and after the verapamil (3 μmol/L) administration, cardiodynamic parameters were recorded (dp/dtmax, dp/dtmin, systolic left ventricular pressure, diastolic left ventricular pressure, heart rate, coronary flow), as well as coronary and cardiac oxidative stress parameters. The results showed significant increases of diastolic left ventricular pressure following NO and CO inhibition, but also increases of coronary flow following H2S and CO inhibition. Following verapamil administration, significant decreases of dp/dtmax were noted after NO and CO inhibition, then increase of diastolic left ventricular pressure following CO inhibition, and increase of coronary flow following NO, H2S, or CO inhibition. Oxidative stress markers were increased but catalase activity was significantly decreased in cardiac tissue. Gasotransmitters and calcium influx are involved in pleiotropic cardiovascular effects of propofol in male Wistar rats.


Sign in / Sign up

Export Citation Format

Share Document