Profound Increase in Epinephrine Concentration in Plasma and Cardiovascular Stimulation after [micro sign]-Opioid Receptor Blockade in Opioid-addicted Patients during Barbiturate-induced Anesthesia for Acute Detoxification 

1998 ◽  
Vol 88 (5) ◽  
pp. 1154-1161 ◽  
Author(s):  
Peter Kienbaum ◽  
Norbert Thurauf ◽  
Martin C. Michel ◽  
Norbert Scherbaum ◽  
Markus Gastpar ◽  
...  

Background Acute displacement of opioids from their receptors by administration of large doses of opioid antagonists during general anesthesia is a new approach for detoxification of patients addicted to opioids. The authors tested the hypothesis that mu-opioid receptor blockade by naloxone induces cardiovascular stimulation mediated by the sympathoadrenal system. Methods Heart rate, cardiac index, and intravascular pressures were measured in 10 patients addicted to opioids (drug history; mean +/- SD, 71 +/- 51 months) during a program of methadone substitution (96 +/- 57 mg/day). Cardiovascular variables and concentrations of catecholamine in plasma were measured in the awake state, during methohexital-induced anesthesia (dose, 74 +/- 44 microg x kg(-1) x min(-1)) before administration of naloxone, and repeatedly during the first 3 h of mu-opioid receptor blockade. Naloxone was administered initially in an intravenous dose of 0.4 mg, followed by incremental bolus doses (0.8, 1.6, 3.2, and 6.4 mg) at 15-min intervals until a total dose of 12.4 mg had been administered within 60 min; administration was then continued by infusion (0.8 mg/h). Results Concentration of epinephrine in plasma increased 30-fold (15 +/- 9 to 458 +/- 304 pg/ml), whereas concentration of norepinephrine in plasma only increased to a minor extent (76 +/- 44 to 226 +/- 58 pg/ml, P < 0.05). Cardiac index increased by 74% (2.7 +/- 0.41 to 4.7 +/- 1.7 min(-1) x m(-2)), because of increases in heart rate (89 +/- 16 to 108 +/- 17 beats/min) and stroke volume (+44%), reaching maximum 45 min after the initial injection of naloxone. In parallel, systemic vascular resistance index decreased (-40%). Systolic arterial pressure significantly increased (113 +/- 16 to 138 +/- 16 mmHg), whereas diastolic arterial pressure did not change. Conclusions Despite barbiturate-induced anesthesia, acute mu-opioid receptor blockade in patients addicted to opioids induces profound epinephrine release and cardiovascular stimulation. These data suggest that long-term opioid receptor stimulation changes sympathoadrenal and cardiovascular function, which is acutely unmasked by mu-opioid receptor blockade. Because of the attendant cardiovascular stimulation, acute detoxification using naloxone should be performed by trained anesthesiologists or intensivists.

2002 ◽  
Vol 96 (2) ◽  
pp. 346-351 ◽  
Author(s):  
Peter Kienbaum ◽  
Thorsten Heuter ◽  
Martin C. Michel ◽  
Norbert Scherbaum ◽  
Markus Gastpar ◽  
...  

Background Mu-opioid receptor blockade by naloxone administered for acute detoxification in patients addicted to opioids markedly increases catecholamine plasma concentrations, muscle sympathetic activity (MSA), and is associated with cardiovascular stimulation despite general anesthesia. The current authors tested the hypothesis that the alpha2-adrenoceptor agonist clonidine (1) attenuates increased MSA during mu-opioid receptor blockade for detoxification, and (2) prevents cardiovascular activation when given before detoxification. Methods Fourteen mono-opioid addicted patients received naloxone during propofol anesthesia. Clonidine (10 microg x kg(-1) administered over 5 min + 5 microg x kg(-1) x h(-1) intravenous) was infused either before (n = 6) or after (n = 6) naloxone administration. Two patients without immediate clonidine administration occurring after naloxone administration served as time controls. Muscle sympathetic activity (n = 8) in the peroneal nerve, catecholamine plasma concentrations (n = 14), arterial blood pressure, and heart rate were assessed in awake patients, during propofol anesthesia before and after mu-opioid receptor blockade, and after clonidine administration. Results Mu-receptor blockade markedly increased MSA from a low activity (burst frequency: from 2 burst/min +/- 1 to 24 +/- 8, means +/- SD). Similarly, norepinephrine (41 pg/ml +/- 37 to 321 +/- 134) and epinephrine plasma concentration (13 pg/ml +/- 6 to 627 +/- 146) significantly increased, and were associated with, increased arterial blood pressure and heart rate. Clonidine immediately abolished both increased MSA (P < 0.001) and catecholamine plasma concentrations (P < 0.001). When clonidine was given before mu-opioid receptor blockade, catecholamine plasma concentrations and hemodynamic variables did not change. Conclusions Administration of the alpha2-adrenoceptor agonist clonidine decreases both increased MSA and catecholamine plasma concentrations observed after mu-opioid receptor blockade for detoxification. Furthermore, clonidine pretreatment prevents the increase in catecholamine plasma concentration that otherwise occurs during mu-opioid receptor blockade.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Bruno Levy ◽  
Caroline Fritz ◽  
Caroline Piona ◽  
Kevin Duarte ◽  
Andrea Morelli ◽  
...  

Abstract Background Several studies have shown that heart rate control with selective beta-1 blockers in septic shock is safe. In these trials, esmolol was administered 24 h after onset of septic shock in patients who remained tachycardic. While an earlier use of beta-blockers might be beneficial, such use remains challenging due to the difficulty in distinguishing between compensatory and non-compensatory tachycardia. Therefore, the Esmosepsis study was designed to study the effects of esmolol aimed at reducing the heart rate by 20% after the initial resuscitation process in hyperkinetic septic shock patients on (1) cardiac index and (2) systemic and regional hemodynamics as well as inflammatory patterns. Methods Nine consecutive stabilized tachycardic hyperkinetic septic shock patients treated with norepinephrine for a minimum of 6 h were included. Esmolol was infused during 6 h in order to decrease the heart rate by 20%. The following data were recorded at hours H0 (before esmolol administration), H1–H6 (esmolol administration) and 1 h after esmolol cessation (H7): systolic arterial pressure, diastolic arterial pressure, mean arterial pressure, central venous pressure, heart rate, PICCO transpulmonary thermodilution, sublingual and musculo-cutaneous microcirculation, indocyanine green clearance and echocardiographic parameters, diuresis, lactate, and arterial and venous blood gases. Results Esmolol was infused 9 (6.4–11.6) hours after norepinephrine introduction. Esmolol was ceased early in 3 out of 9 patients due to a marked increase in norepinephrine requirement associated with a picture of persistent cardiac failure at the lowest esmolol dose. For the global group, during esmolol infusion, norepinephrine infusion increased from 0.49 (0.34–0.83) to 0.78 (0.3–1.11) µg/min/kg. The use of esmolol was associated with a significant decrease in heart rate from 115 (110–125) to 100 (92–103) beats/min and a decrease in cardiac index from 4.2 (3.1–4.4) to 2.9 (2.5–3.7) l/min/m−2. Indexed stroke volume remained unchanged. Cardiac function index and global ejection fraction also markedly decreased. Using echocardiography, systolic, diastolic as well as left and right ventricular function parameters worsened. After esmolol cessation, all parameters returned to baseline values. Lactate and microcirculatory parameters did not change while the majority of pro-inflammatory proteins decreased in all patients. Conclusion In the very early phase of septic shock, heart rate reduction using fast esmolol titration is associated with an increased risk of hypotension and decreased cardiac index despite maintained adequate tissue perfusion (NCT02068287).


1998 ◽  
Vol 59 (3) ◽  
pp. 627-635 ◽  
Author(s):  
S Krishnan-Sarin ◽  
G.S Wand ◽  
X.-W Li ◽  
P.S Portoghese ◽  
J.C Froehlich

Sign in / Sign up

Export Citation Format

Share Document