Etomidate Does Not Alter Recovery after Anoxia of Evoked Population Spikes Recorded from the CA1 Region of Rat Hippocampal Slices 

1998 ◽  
Vol 88 (5) ◽  
pp. 1274-1280 ◽  
Author(s):  
Eduarda M. Amadeu ◽  
Elisabeth A. Abramowicz ◽  
Geoffrey Chambers ◽  
James E. Cottrell ◽  
Ira S. Kass

Background Etomidate is an anesthetic agent that reduces the cerebral metabolic rate and causes minimal cardiovascular depression. Its ability to improve recovery after anoxia or ischemia is equivocal. An in vitro neuronal preparation was used to examine the action of etomidate on electrophysiologic and biochemical parameters during and after anoxia. Methods The Schaffer collateral pathway was stimulated, and a postsynaptic evoked population spike was recorded from the CA1 pyramidal cell layer of rat hippocampal slices. Etomidate or propylene glycol, its solvent, was present 15 min before, during, and 10 min after anoxia. Adenosine triphosphate, sodium, and potassium concentrations were measured at the end of anoxia in tissue treated with etomidate, propylene glycol, or with no added drugs. Results Etomidate did not alter recovery after 6 min of anoxia. The population spikes from untreated slices recovered to 32% of their preanoxic amplitude, and slices treated with 0.5, 3, and 30 microg/ml etomidate recovered to 24%, 35%, and 13%, respectively. Slices treated with propylene glycol, equivalent to that in 3 and 30 microg/ml etomidate, recovered to 46% and 12%, respectively, and this was not significantly different from untreated slices. Etomidate did not attenuate the decrease in adenosine triphosphate concentrations during anoxia. The increase in sodium and the decrease in potassium during anoxia were significantly attenuated by 30 but not by 3 microg/ml etomidate. Conclusions A range of etomidate concentrations did not significantly alter recovery of the evoked population spike after anoxia in rat hippocampal slices. A high concentration of etomidate did attenuate the increase in sodium and the decrease in potassium during anoxia.

2006 ◽  
Vol 95 (5) ◽  
pp. 3105-3112 ◽  
Author(s):  
S. Piccinin ◽  
A. D. Randall ◽  
J. T. Brown

Synchronous neuronal firing can be induced in hippocampal slices in the absence of synaptic transmission by lowering extracellular Ca2+ and raising extracellular K+. However, the ionic mechanisms underlying this nonsynaptic synchronous firing are not well understood. In this study we have investigated the role of KCNQ /Kv7 channels in regulating this form of nonsynaptic bursting activity. Incubation of rat hippocampal slices in reduced (<0.2 mM) [Ca2+]o and increased (6.3 mM) [K+]o, blocked synaptic transmission, increased neuronal firing, and led to the development of spontaneous periodic nonsynaptic epileptiform activity. This activity was recorded extracellularly as large (4.7 ± 1.9 mV) depolarizing envelopes with superimposed high-frequency synchronous population spikes. These intraburst population spikes initially occurred at a high frequency (about 120 Hz), which decayed throughout the burst stabilizing in the gamma-frequency band (30–80 Hz). Further increasing [K+]o resulted in an increase in the interburst frequency without altering the intraburst population spike frequency. Application of retigabine (10 μM), a Kv7 channel modulator, completely abolished the bursts, in an XE-991–sensitive manner. Furthermore, application of the Kv7 channel blockers, linopirdine (10 μM) or XE-991 (10 μM) alone, abolished the gamma frequency, but not the higher-frequency population spike firing observed during low Ca2+/high K+ bursts. These data suggest that Kv7 channels are likely to play a role in the regulation of synchronous population firing activity.


2002 ◽  
Vol 87 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Marom Bikson ◽  
Scott C. Baraban ◽  
Dominique M. Durand

Nonsynaptic mechanisms exert a powerful influence on seizure threshold. It is well-established that nonsynaptic epileptiform activity can be induced in hippocampal slices by reducing extracellular Ca2+ concentration. We show here that nonsynaptic epileptiform activity can be readily induced in vitro in normal (2 mM) Ca2+ levels. Those conditions sufficient for nonsynaptic epileptogenesis in the CA1 region were determined by pharmacologically mimicking the effects of Ca2+ reduction in normal Ca2+ levels. Increasing neuronal excitability, by removing extracellular Mg2+ and increasing extracellular K+ (6–15 mM), induced epileptiform activity that was suppressed by postsynaptic receptor antagonists [d-(−)-2-amino-5-phosphonopentanoic acid, picrotoxin, and 6,7-dinitroquinoxaline-2,3-dione] and was therefore synaptic in nature. Similarly, epileptiform activity induced when neuronal excitability was increased in the presence of KCaantagonists (verruculogen, charybdotoxin, norepinephrine, tetraethylammonium salt, and Ba2+) was found to be synaptic in nature. Decreases in osmolarity also failed to induce nonsynaptic epileptiform activity in the CA1 region. However, increasing neuronal excitability (by removing extracellular Mg2+ and increasing extracellular K+) in the presence of Cd2+, a nonselective Ca2+channel antagonist, or veratridine, a persistent sodium conductance enhancer, induced spontaneous nonsynaptic epileptiform activity in vitro. Both novel models were characterized using intracellular and ion-selective electrodes. The results of this study suggest that reducing extracellular Ca2+ facilitates bursting by increasing neuronal excitability and inhibiting Ca2+ influx, which might, in turn, enhance a persistent sodium conductance. Furthermore, these data show that nonsynaptic mechanisms can contribute to epileptiform activity in normal Ca2+ levels.


2002 ◽  
Vol 88 (2) ◽  
pp. 879-887 ◽  
Author(s):  
E. Tanaka ◽  
H. Uchikado ◽  
S. Niiyama ◽  
K. Uematsu ◽  
H. Higashi

Simultaneous recordings of intracellular Ca2+([Ca2+]i) signal and extracellular DC potential were obtained from the CA1 region in 1-[6-amino-2-(5-carboxy-2-oxazolyl)-5-benzofuranyloxy]-2-(2-amino-5-methylphenoxy)-ethane- N, N, N′, N′-tetraacetic acid penta-acetoxymethyl ester (Fura-2/AM)-loaded rat hippocampal slices. Superfusion with oxygen- and glucose-deprived medium (in vitro ischemia) for 5–6 min produced a rapid rise of the [Ca2+]i level in the stratum radiatum (rising phase of the [Ca2+]i signal), which occurred simultaneously with a rapid negative DC potential (rapid negative potential). When oxygen and glucose were reintroduced, the increased [Ca2+]i signal diminished rapidly (falling phase of the [Ca2+]i signal) during the generation of a slow negative DC potential (slow negative potential), which occurred within 1 min from the onset of the reintroduction. Thereafter, the [Ca2+]i signal partially and the slow negative potential completely returned to the preexposure level approximately 6 min after the reintroduction. The changes in [Ca2+]i signal during and after in vitro ischemia were very similar to the changes in the membrane potential of glial cells. The rising and falling phases of [Ca2+]i signal corresponded to the rapid depolarization and a depolarizing hump, respectively, in the repolarizing phase of glial cells. A prolonged application of in vitro ischemia or a reintroduction of either glucose or oxygen suppressed the falling phase after ischemic exposure. The application of ouabain (30 μM) generated both a rapid negative potential and a rapid elevation of [Ca2+]i, but no slow negative potential or rapid reduction in [Ca2+]i were observed. When oxygen and glucose were reintroduced to slices in the Na+-free or ouabain- or Ni2+-containing medium, the falling phase was suppressed. The falling phase was significantly accelerated in Ca2+- and Mg2+-free with EGTA-containing medium. In contrast, the falling phase was significantly slower in the Ca2+-free with high Mg2+- and EGTA-containing medium. The falling phase of the [Ca2+]isignal after ischemic exposure is thus considered to be primarily dependent on the reactivation of Na+, K+-ATPases, while the extrusion of cytosolic Ca2+ via the forward-mode operation of Na+/Ca2+ exchangers in glial cells is thought to be directly involved in the rapid reduction of [Ca2+]i after ischemic exposure.


1989 ◽  
Vol 67 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Y. Hong ◽  
K. Krnjević

The inhibitory effect of serotonin, released iontophoretically, on acetylcholine-induced facilitation of population spikes evoked by fimbria–commissural stimulation was studied in the CA1 region of rat hippocampus in vivo. After serotonin was applied for 2.6 ± 0.8 min, acetylcholine's action was inhibited in 39 cases out of 57 (68.4%), by 68.9 ± 23.1%, irrespective of whether serotonin alone increased or reduced the population spike. Spiperone, used as a 5-hydroxytryptamine1A (5-HT1A) antagonist, suppressed the inhibitory action of serotonin in 14 of 21 tests. Serotonin had similar effects on population spike facilitations induced by acetyl-β-methylcholine and dimethylphenylpiperazinium. Thus serotonin, probably acting on 5-HT1A receptors, blocks effectively but indiscriminately all cholinergic facilitations, whether mediated by nicotinic or muscarinic receptors.Key words: serotonin, cholinergic facilitation, hippocampal pyramidal cells, spiperone, muscarinic and nicotinic actions.


2002 ◽  
Vol 96 (3) ◽  
pp. 681-687 ◽  
Author(s):  
Rika Sasaki ◽  
Koki Hirota ◽  
Sheldon H. Roth ◽  
Mitsuaki Yamazaki

Background Magnesium ion (Mg2+) is involved in important processes as modulation of ion channels, receptors, neurotransmitter release, and cell excitability in the central nervous system. Although extracellular Mg2+ concentration ([Mg2+]o) can be altered during general anesthesia, there has been no evidence for [Mg2+]o-dependent modification of anesthetic actions on neural excitability in central nervous system preparations. The purpose of current study was to determine whether the effects of volatile anesthetics are [Mg2+]o-dependent in mammalian central nervous system. Methods Extracellular electrophysiologic recordings from CA1 neurons in rat hippocampal slices were used to investigate the effects of [Mg2+]o and anesthetics on population spike amplitude and excitatory postsynaptic potential slope. Results The depression of population spike amplitudes and excitatory postsynaptic potential slopes by volatile anesthetics were significantly dependent on [Mg2+]o. The effects were attenuated in the presence of a constant [Mg2+]o/extracellular Ca2+ concentration ratio. However, neither N-methyl-d-aspartate receptor antagonists nor a non-N-methyl-d-aspartate receptor antagonist altered the [Mg2+]o-dependent anesthetic-induced depression of population spikes. Volatile anesthetics produced minimal effects on input-output (excitatory postsynaptic potential-population spike) relations or the threshold for population spike generation. The effects were not modified by changes in [Mg2+]o. In addition, the population spike amplitudes, elicited via antidromic (nonsynaptic) stimulation, were not influenced by [Mg2+]o in the presence of volatile anesthetics. Conclusions These results provide support that alteration of [Mg2+]o modifies the actions of volatile anesthetics on synaptic transmission and that the effects could be, at least in part, a result of presynaptic Ca2+ channel-related mechanisms.


1983 ◽  
Vol 61 (8) ◽  
pp. 841-846 ◽  
Author(s):  
I. Mody ◽  
P. Leung ◽  
J. J. Miller

Perfusion of 50 μM norepinephrine (NE) produced a marked, reversible decrease (range 20–28%) of the extracellular population spike and excitatory postsynaptic potential (EPSP) responses of the CA1 region evoked by stratum radiatum stimulation in the rat hippocampal slice preparation. The effects of NE were dramatically altered in slices obtained from animals which were previously treated with intracerebral or intraventricular injections of 6-hydroxydopamine (6-OHDA) to destroy forebrain catecholamine systems. In the latter preparations NE produced a reduction in the inhibition of the EPSP (50%), enhancement of the population spike amplitude, and multiple spike discharges characteristic of ongoing epileptiform activity. The reversal of NE-induced inhibition and the generation of seizurelike activity in 6-OHDA-treated animals suggests that NE may, in part, act upon interneurons to produce a disinhibition of CA1 pyramidal cells.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3502 ◽  
Author(s):  
Evelin Fehér ◽  
István Szatmári ◽  
Tamás Dudás ◽  
Anna Zalatnai ◽  
Tamás Farkas ◽  
...  

Kynurenic acid (KYNA), a metabolite of tryptophan, as an excitatory amino acid receptor antagonist is an effective neuroprotective agent in case of excitotoxicity, which is the hallmark of brain ischemia and several neurodegenerative processes. Therefore, kynurenine pathway, KYNA itself, and its derivatives came into the focus of research. During the past fifteen years, our research group has developed several neuroactive KYNA derivatives, some of which proved to be neuroprotective in preclinical studies. In this study, the synthesis of these KYNA derivatives and their evaluation with divergent molecular characteristics are presented together with their most typical effects on the monosynaptic transmission in CA1 region of the hippocampus of the rat. Their effects on the basic neuronal activity (on the field excitatory postsynaptic potentials: fEPSP) were studied in in vitro hippocampal slices in 1 and 200 μM concentrations. KYNA and its derivative 4 in both 1 and 200 μM concentrations proved to be inhibitory, while derivative 8 only in 200 μM decreased the amplitudes of fEPSPs. Derivative 5 facilitated the fEPSPs in 200 μM concentration. This is the first comparative study which evaluates the structural and functional differences of formerly and newly developed KYNA analogs. Considerations on possible relations between molecular structures and their physiological effects are presented.


2003 ◽  
Vol 90 (4) ◽  
pp. 2746-2751 ◽  
Author(s):  
Yoshikazu Isomura ◽  
Yoko Fujiwara-Tsukamoto ◽  
Masahiko Takada

Previous investigations have suggested that GABA may act actively as an excitatory mediator in the generation of seizure-like (ictal) or interictal epileptiform activity in several experimental models of temporal lobe epilepsy. However, it remains to be known whether or not such GABAergic excitation may participate in seizure propagation into neighboring cortical regions. In our in vitro study using mature rat hippocampal slices, we examined the cellular mechanism underlying synchronous propagation of seizure-like afterdischarge in the CA1 region, which is driven by depolarizing GABAergic transmission, into the adjacent subiculum region. Tetanically induced seizure-like afterdischarge was always preceded by a GABAergic, slow posttetanic depolarization in the pyramidal cells of the original seizure-generating region. In contrast, the slow posttetanic depolarization was no longer observed in the subicular pyramidal cells when the afterdischarge was induced in the CA1 region. Surgical cutting of axonal pathways through the stratum oriens and the alveus between the CA1 and the subiculum region abolished the CA1-generated afterdischarge in the subicular pyramidal cells. Intracellular loading of fluoride ions, a GABAA receptor blocker, into single subicular pyramidal cells had no inhibitory effect on the CA1-generated afterdischarge in the pyramidal cells. Furthermore, the CA1-generated afterdischarge in the subicular pyramidal cells was largely depressed by local application of glutamate receptor antagonists to the subiculum region during afterdischarge generation. The present results indicate that the excitatory GABAergic generation of seizure-like activity seems to be restricted to epileptogenic foci of origin in the seizure-like epilepsy model in vitro.


Sign in / Sign up

Export Citation Format

Share Document