Different Actions of General Anesthetics on the Firing Patterns of Neocortical Neurons Mediated by the GABAAReceptor 

1999 ◽  
Vol 91 (2) ◽  
pp. 500-511 ◽  
Author(s):  
Bernd Antkowiak

Background In cultured slice preparations of rat neocortical tissue, clinically relevant concentrations of volatile anesthetics mainly decreased action potential firing of neurons by enhancing gamma-aminobutyric acid (GABA(A)) receptor-mediated synaptic inhibition. The author's aim was to determine if other anesthetic agents are similarly effective in this model system and act via the same molecular mechanism. Methods The actions of various general anesthetics on the firing patterns of neocortical neurons were investigated by extracellular single-unit recordings. Results Pentobarbital, propofol, ketamine, and ethanol inhibited spontaneous action potential firing in a concentration-dependent manner. The estimated median effective concentration (EC50) values were close to or below the EC50 values for general anesthesia. Bath application of the GABA(A) antagonist bicuculline (100 microM) decreased the effectiveness of propofol, ethanol, halothane, isoflurane, enflurane, and diazepam by more than 90%, indicating that these agents acted predominantly via the GABA(A) receptor. The depressant effects of pentobarbital and ketamine were not significantly reduced by bicuculline treatment. Drugs acting mainly via the GABA(A) receptor altered the firing patterns of neocortical cells in different manners. Diazepam reduced the discharge rates by decreasing the number of action potentials per burst, leaving the burst rate unaffected. In contrast, muscimol, GABA, propofol, and volatile anesthetics decreased the burst rate. Conclusions Although several anesthetic agents acted nearly exclusively via the GABA(A) receptor, they changed the discharge patterns of cortical neurons in different ways. This finding is explained by GABA-mimetic or benzodiazepine-like molecular interactions.

1998 ◽  
Vol 88 (6) ◽  
pp. 1592-1605 ◽  
Author(s):  
Bernd Antkowiak ◽  
Charlotte Helfrich-Forster

Background Volatile general anesthetics depress neuronal activity in the mammalian central nervous system and enhance inhibitory Cl- currents flowing across the gamma-aminobutyric acid A (GABA(A)) receptor-ion channel complex. The extent to which an increase in GABA(A)-mediated synaptic inhibition contributes to the decrease in neuronal firing must be determined, because many further effects of these agents have been reported on the molecular level. Methods The actions of halothane, isoflurane, and enflurane on the firing patterns of single neurons were investigated by extracellular recordings in organotypic slice cultures derived from the rat neocortex. Results Volatile anesthetics depressed spontaneous action potential firing of neocortical neurons in a concentration-dependent manner. The estimated median effective concentration (EC50) values were about one half the EC50 values for general anesthesia. In the presence of the GABA(A) antagonist bicuculline (20 microM), the effectiveness of halothane, isoflurane, and enflurane in reducing the discharge rates were diminished by 48-65%, indicating that these drugs act via the GABA(A) receptor. Conclusions Together with recent investigations, our results provide evidence that halothane, isoflurane, and enflurane reduced spontaneous action potential firing of neocortical neurons in cultured brain slices mainly by increasing GABA(A)-mediated synaptic inhibition. At concentrations, approximately one half the EC50 for general anesthesia, volatile anesthetics increased overall GABA(A)-mediated synaptic inhibition about twofold, thus decreasing spontaneous action potential firing by half.


2020 ◽  
Vol 124 (2) ◽  
pp. 510-524
Author(s):  
Frances L. Meredith ◽  
Katherine J. Rennie

Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.


2010 ◽  
Vol 111 (6) ◽  
pp. 1394-1399 ◽  
Author(s):  
Berthold Drexler ◽  
Stefan Zinser ◽  
Harald Hentschke ◽  
Bernd Antkowiak

2013 ◽  
Vol 703 (1-3) ◽  
pp. 18-24 ◽  
Author(s):  
Berthold Drexler ◽  
Stefan Zinser ◽  
Shengming Huang ◽  
Michael M. Poe ◽  
Uwe Rudolph ◽  
...  

2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


Author(s):  
Vincenzo Crunelli ◽  
Adam C. Errington ◽  
Stuart W. Hughes ◽  
Tibor I. Tóth

During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca 2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca 2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located.


2015 ◽  
Vol 114 (2) ◽  
pp. 1146-1157 ◽  
Author(s):  
V. Carmean ◽  
M. A. Yonkers ◽  
M. B. Tellez ◽  
J. R. Willer ◽  
G. B. Willer ◽  
...  

The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons.


2020 ◽  
Author(s):  
Omer Barkai ◽  
Rachely Butterman ◽  
Ben Katz ◽  
Shaya Lev ◽  
Alexander M. Binshtok

AbstractThe output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree. The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance, and location of individual terminals. Moreover, we show that activation of multiple terminals by capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of terminals in simulated models of inflammatory or nociceptive hyperexcitability led to a change in the temporal pattern of action potential firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathological conditions, leading to pain hypersensitivity.Significance statementNoxious stimuli are detected by terminal endings of the primary nociceptive neurons, which are organized into morphologically complex terminal trees. The information from multiple terminals is integrated along the terminal tree, computing the neuronal output, which propagates towards the CNS, thus shaping the pain sensation. Here we revealed that the structure of the nociceptive terminal tree determines the output of the nociceptive neurons. We show that the integration of noxious information depends on the morphology of the terminal trees and how this integration and, consequently, the neuronal output change under pathological conditions. Our findings help to predict how nociceptive neurons encode noxious stimuli and how this encoding changes in pathological conditions, leading to pain.


Sign in / Sign up

Export Citation Format

Share Document