Amitriptyline versus  Bupivacaine in Rat Sciatic Nerve Blockade

2001 ◽  
Vol 94 (4) ◽  
pp. 661-667 ◽  
Author(s):  
Peter Gerner ◽  
Mustafa Mujtaba ◽  
Catherine J. Sinnott ◽  
Ging Kuo Wang

Background Amitriptyline, a tricyclic antidepressant, is frequently used orally for the management of chronic pain. To date there is no report of amitriptyline producing peripheral nerve blockade. The authors therefore investigated the local anesthetic properties of amitriptyline in rats and in vitro. Methods Sciatic nerve blockade was performed with 0.2 ml amitriptyline or bupivacaine at selected concentrations, and the motor, proprioceptive, and nociceptive blockade was evaluated. Cultured rat GH3 cells were externally perfused with amitriptyline or bupivacaine, and the drug affinity toward inactivated and resting Na+ channels was assessed under whole-cell voltage clamp conditions. In addition, use-dependent blockade of these drugs at 5 Hz was evaluated. Results Complete sciatic nerve blockade for nociception was obtained with amitriptyline for 217 +/- 19 min (5 mM, n = 8, mean +/- SEM) and for 454 +/- 38 min (10 mM, n = 7) versus bupivacaine for 90 +/- 13 min (15.4 mM, n = 6). The time to full recovery of nociception for amitriptyline was 353 +/- 12 min (5 mM) and 656 +/- 27 min (10 mM) versus 155 +/- 9 min for bupivacaine (15.4 mM). Amitriptyline was approximately 4.7-10.6 times more potent than bupivacaine in binding to the resting channels (50% inhibitory concentration [IC50] of 39.8 +/- 2.7 vs. 189.6 +/- 22.3 microM) at - 150 mV, and to the inactivated Na+ channels (IC50 of 0.9 +/- 0.1 vs. 9.6 +/- 0.9 microM) at -60 mV. High-frequency stimulation at 3 microM caused an additional approximately 14% blockade for bupivacaine, but approximately 50% for amitriptyline. Conclusion Amitriptyline is a more potent blocker of neuronal Na+ channels than bupivacaine in vivo and in vitro. These findings suggest that amitriptyline could extend its clinical usefulness for peripheral nerve blockade.

2001 ◽  
Vol 95 (5) ◽  
pp. 1198-1204 ◽  
Author(s):  
Mustafa G. Mujtaba ◽  
Peter Gerner ◽  
Ging Kuo Wang

Background Local anesthetics that produce analgesia of long duration with minimal impairment of autonomic functions are highly desirable for pain management in the clinic. Prenylamine is a known calcium channel blocker, but its local anesthetic blocking effects on voltage-gated sodium channels have not been studied thus far. Methods The authors characterized the tonic and use-dependent prenylamine block of native Na(+) channels in cultured rat neuronal GH3 cells during whole cell voltage clamp conditions and the local anesthetic effect of prenylamine by neurologic evaluation of sensory and motor functions of sciatic nerve during neural block in rats. Results Prenylamine elicits both use-dependent block of Na(+) channels during repetitive pulses (3 microm prenylamine produced 50% block at 5 Hz) and tonic block for both resting and inactivated Na(+) channels. The 50% inhibitory concentration for prenylamine was 27.6 +/- 1.3 microm for resting channels and 0.75 +/- 0.02 microm for inactivated channels. Furthermore, in vivo data show that 10 mm prenylamine produced a complete sciatic nerve block of motor function, proprioceptive responses, and nociceptive responses that lasted approximately 27, 34, and 24 h, respectively. Rats injected with 15.4 mm bupivacaine, a known local anesthetic currently used for pain management, had a significantly shorter duration of blockade (< 2 h) compared with rats injected with prenylamine. Conclusions The data presented here demonstrate that prenylamine possesses local anesthetic properties in vitro and elicits prolonged local anesthesia in vivo.


2013 ◽  
Vol 41 (04) ◽  
pp. 865-885 ◽  
Author(s):  
Sheng-Chi Lee ◽  
Chin-Chuan Tsai ◽  
Chun-Hsu Yao ◽  
Yuan-Man Hsu ◽  
Yueh-Sheng Chen ◽  
...  

The present study provides in vitro and in vivo evaluation of arecoline on peripheral nerve regeneration. In the in vitro study, we found that arecoline at 50 μg/ml could significantly promote the survival and outgrowth of cultured Schwann cells as compared to the controls treated with culture medium only. In the in vivo study, we evaluated peripheral nerve regeneration across a 10-mm gap in the sciatic nerve of the rat, using a silicone rubber nerve chamber filled with the arecoline solution. In the control group, the chambers were filled with normal saline only. At the end of the fourth week, morphometric data revealed that the arecoline-treated group at 5 μg/ml significantly increased the number and the density of myelinated axons as compared to the controls. Immunohistochemical staining in the arecoline-treated animals at 5 μg/ml also showed their neural cells in the L4 and L5 dorsal root ganglia ipsilateral to the injury were strongly retrograde-labeled with fluorogold and lamina I–II regions in the dorsal horn ipsilateral to the injury were significantly calcitonin gene-related peptide-immunolabeled compared with the controls. In addition, we found that the number of macrophages recruited in the distal sciatic nerve was increased as the concentration of arecoline was increased. Electrophysiological measurements showed the arecoline-treated groups at 5 and 50 μg/ml had a relatively larger nerve conductive velocity of the evoked muscle action potentials compared to the controls. These results indicate that arecoline could stimulate local inflammatory conditions, improving the recovery of a severe peripheral nerve injury.


2000 ◽  
Vol 93 (3) ◽  
pp. 744-755 ◽  
Author(s):  
Marina Vladimirov ◽  
Carla Nau ◽  
Wai Man Mok ◽  
Gary Strichartz

Background Chiral local anesthetics, such as ropivacaine and levobupivacaine, have the potential advantage over racemic mixtures in showing reduced toxic side effects. However, these S-(levo, or "-")isomers also have reportedly lower potency than their optical antipode, possibly resulting in no advantage in therapeutic index. Potency for local anesthetics inhibiting Na+ channels or action potentials depends on the pattern of membrane potential and so also does the stereopotency ratio. Here the authors have quantitated the stereopotencies of R-, S-, and racemic bupivacaine, comparing several in vitro assays of neuronal Na+ channels with those from in vivo functional nerve block, to establish relative potencies and to understand better the role of different modes of channel inhibition in overall functional anesthesia. Methods The binding of bupivacaine to Na+ channels was assessed indirectly by its antagonism of [3H]-batrachotoxin binding to rat brain synaptosomes. Inhibition of Na+ currents by bupivacaine was directly assayed in voltage-clamped GH-3 neuroendocrine cells. Neurobehavioral functions were disrupted by bupivacaine percutaneously injected (0.1 ml; 0.0625-1.0%) at the rat sciatic nerve and semiquantitatively assayed. Concentration-dependent actions of R-, S-, and racemic bupivacaine were compared for their magnitude and duration of action. Results Competitive batrachotoxin displacement has a stereopotency ratio of R:S = 3:1. Inhibition of Na+ currents with different prepulse potentials shows that S > R potency when the membrane is hyperpolarized, and R > S potency when it is depolarized from normal resting values. Functional deficits assayed in vivo usually demonstrate no consistent enantioselectivity and only a modest stereopotency (R:S = 1.2-1.3) for peak analgesia achieved at the lowest doses. Other functions display no significant stereopotency in either the degree, the duration, or their product (area under the curve) at any dose. Conclusion Although the in vitro actions of bupivacaine showed stereoselectivity ratios of 1.3-3:1 (R:S), in vivo nerve block at clinically used concentrations showed much smaller ratios for peak effect and no significant enantioselectivity for duration. A primary role for the blockade of resting rather than open or inactivated Na+ channels may explain the modest stereoselectivity in vivo, although stereoselective factors controlling local disposition cannot be ruled out. Levo-(S-)bupivacaine is effectively equipotent to R- or racemic bupivacaine in vivo for rat sciatic nerve block.


Author(s):  
Gang Yin ◽  
Ying Peng ◽  
Yaofa Lin ◽  
Peilin Wang ◽  
Zhuoxuan Li ◽  
...  

Peripheral nerve injury (PNI) is a common clinical problem, which can cause severe disability and dramatically affect a patient’s quality of life. Neural regeneration after PNI is a complex biological process that involves a variety of signaling pathways and genes. Emerging studies demonstrated that long non-coding RNAs (lncRNAs) were abnormally expressed after PNI and played pivotal roles in peripheral nerve regeneration. Based on the rat sciatic nerve injury model, we found that the expression levels of several lncRNAs were increased significantly in the sciatic nerve after injury. Software prediction prompted us to focus on one up-regulated lncRNA, MSTRG.24008.1. Dual-luciferase reporter assay, RNA pull-down assay and RNA interference approach verified that MSTRG.24008.1 regulated neuroregeneration via the miR-331-3p/nucleotide-binding oligomerization domain-like pyrin domain containing 3 (NLRP3)/myelin and lymphocyte protein (MAL) axis in vitro. Subsequently, we performed gastrocnemius muscle gravity and sciatic functional index experiments to evaluate the recovery of injured sciatic nerves after MSTRG.24008.1 siRNA interference in vivo. In conclusion, knockdown of MSTRG.24008.1 promotes the regeneration of the sciatic nerve via the miR-331-3p/NLRP3/MAL axis, which may provide a new strategy to evaluate and repair injured peripheral nerves clinically.


1995 ◽  
Vol 83 (3) ◽  
pp. 583-592. ◽  
Author(s):  
F. A. Popitz-Bergez ◽  
S. Leeson ◽  
G. R. Strichartz ◽  
J. G. Thalhammer

Background During peripheral nerve block, local anesthetic (LA) penetrates within and along the nerve to produce the observed functional deficits. Although much is known about the kinetics and steady-state relation for LA inhibition of impulse activity in vitro in isolated nerve, little is known about the relation between functional loss and intraneural LA content in vivo. This study was undertaken to investigate the relation of functional change to intraneural LA. Methods A sciatic nerve block was performed in rats with 0.1 ml 1% lidocaine radiolabeled with 14C. The total intraneural uptake of LA was determined at different times after injection, and the distribution of lidocaine along the nerve was assayed at different stages of functional block. Drug content was also compared with equilibrium lidocaine uptake in the isolated rat sciatic nerve. Results Total intraneural lidocaine in vivo increased to near steady-state in about 3 min, stabilizing at approximately 14.3 nmol/mg wet tissue for about 12 min before decreasing to zero at 70 min after injection. Although intraneural lidocaine was 1.6% of the injected dose during full block, only 0.3% was left when deep pain sensation returned and 0.065% was still detected when functions fully recovered. Despite these large differences in total lidocaine content, the longitudinal distribution remained constant. Intraneural lidocaine concentrations obtained at full block and partial recovery could be achieved in vitro by equilibration in 0.7-0.9 and 0.2-0.3 mM lidocaine, respectively. Conclusions During peripheral nerve block only a small amount of injected LA penetrates into the nerve. The intraneural content of LA correlates with the depth of functional block.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Rao ◽  
Dianying Zhang ◽  
Tengjiaozi Fang ◽  
Changfeng Lu ◽  
Bo Wang ◽  
...  

At present, repair methods for peripheral nerve injury often fail to get satisfactory result. Although various strategies have been adopted to investigate the microenvironment after peripheral nerve injury, the underlying molecular mechanisms of neurite outgrowth remain unclear. In this study, we evaluate the effects of exosomes from gingival mesenchymal stem cells (GMSCs) combined with biodegradable chitin conduits on peripheral nerve regeneration. GMSCs were isolated from human gingival tissue and characterized by surface antigen analysis and in vitro multipotent differentiation. The cell supernatant was collected to isolate the exosomes. The exosomes were characterized by transmission electron microscopy, Western blot, and size distribution analysis. The effects of exosomes on peripheral nerve regeneration in vitro were evaluated by coculture with Schwann cells and DRGs. The chitin conduit was prepared and combined with the exosomes to repair rat sciatic nerve defect. Histology, electrophysiology, and gait analysis were used to test the effects of exosomes on sciatic nerve function recovery in vivo. We have successfully cultured GMSCs and isolated exosomes. The exosomes from GMSCs could significantly promote Schwann cell proliferation and DRG axon growth. The in vivo studies showed that chitin conduit combined with exosomes from GMSCs could significantly increase the number and diameter of nerve fibers and promote myelin formation. In addition, muscle function, nerve conduction function, and motor function were also obviously recovered. In summary, this study suggests that GMSC-derived exosomes combined with biodegradable chitin conduits are a useful and novel therapeutic intervention in peripheral nerve repair.


2007 ◽  
Vol 107 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Chi-Fei Wang ◽  
Peter Gerner ◽  
Sho-Ya Wang ◽  
Ging Kuo Wang

Abstract Background: Bulleyaconitine A (BLA) is an active ingredient of Aconitum bulleyanum plants. BLA has been approved for the treatment of chronic pain and rheumatoid arthritis in China, but its underlying mechanism remains unclear. Methods: The authors examined (1) the effects of BLA on neuronal voltage-gated Na+ channels in vitro under the whole cell patch clamp configuration and (2) the sensory and motor functions of rat sciatic nerve after single BLA injections in vivo. Results: BLA at 10 μm did not affect neuronal Na+ currents in clonal GH3 cells when stimulated infrequently to +50 mV. When stimulated at 2 Hz for 1,000 pulses (+50 mV for 4 ms), BLA reduced the peak Na+ currents by more than 90%. This use-dependent reduction of Na+ currents by BLA reversed little after washing. Single injections of BLA (0.2 ml at 0.375 mm) into the rat sciatic notch not only blocked sensory and motor functions of the sciatic nerve but also induced hyperexcitability, followed by sedation, arrhythmia, and respiratory distress. When BLA at 0.375 mm was coinjected with 2% lidocaine (approximately 80 mm) or epinephrine (1:100,000) to reduce drug absorption by the bloodstream, the sensory and motor functions of the sciatic nerve remained fully blocked for approximately 4 h and regressed completely after approximately 7 h, with minimal systemic effects. Conclusions: BLA reduces neuronal Na+ currents strongly at +50 mV in a use-dependent manner. When coinjected with lidocaine or epinephrine, BLA elicits prolonged block of both motor and sensory functions in rats with minimal adverse effects.


Author(s):  
Arthur J. Wasserman ◽  
Azam Rizvi ◽  
George Zazanis ◽  
Frederick H. Silver

In cases of peripheral nerve damage the gap between proximal and distal stumps can be closed by suturing the ends together, using a nerve graft, or by nerve tubulization. Suturing allows regeneration but does not prevent formation of painful neuromas which adhere to adjacent tissues. Autografts are not reported to be as good as tubulization and require a second surgical site with additional risks and complications. Tubulization involves implanting a nerve guide tube that will provide a stable environment for axon proliferation while simultaneously preventing formation of fibrous scar tissue. Supplementing tubes with a collagen gel or collagen plus extracellular matrix factors is reported to increase axon proliferation when compared to controls. But there is no information regarding the use of collagen fibers to guide nerve cell migration through a tube. This communication reports ultrastructural observations on rat sciatic nerve regeneration through a silicone nerve stent containing crosslinked collagen fibers.Collagen fibers were prepared as described previously. The fibers were threaded through a silicone tube to form a central plug. One cm segments of sciatic nerve were excised from Sprague Dawley rats. A control group of rats received a silicone tube implant without collagen while an experimental group received the silicone tube containing a collagen fiber plug. At 4 and 6 weeks postoperatively, the implants were removed and fixed in 2.5% glutaraldehyde buffered by 0.1 M cacodylate containing 1.5 mM CaCl2 and balanced by 0.1 M sucrose. The explants were post-fixed in 1% OSO4, block stained in 1% uranyl acetate, dehydrated and embedded in Epon. Axons were counted on montages prepared at a total magnification of 1700x. Montages were viewed through a dissecting microscope. Thin sections were sampled from the proximal, middle and distal regions of regenerating sciatic plugs.


Sign in / Sign up

Export Citation Format

Share Document