Intraspinal Adenosine Induces Spinal Cord Norepinephrine Release in Spinal Nerve-ligated Rats but not in Normal or Sham Controls

2003 ◽  
Vol 98 (6) ◽  
pp. 1461-1466 ◽  
Author(s):  
Carsten Bantel ◽  
Xinhui Li ◽  
James C. Eisenach

Background Intrathecal adenosine is antinociceptive under conditions of central sensitization, but not in response to acute stimuli in normals. The reasons for this selective circumstance of action remain unclear, but some evidence links adenosine's antinociceptive effects to release of norepinephrine by terminals in the spinal cord. The purpose of this study was to test whether spinal adenosine induces norepinephrine release selectively in settings of hypersensitivity. Methods Rats randomly assigned to spinal nerve ligation, sham operation, or no operation were anesthetized. A microdialysis fiber was implanted in the spinal cord dorsal horn at the L5-L6 level and perfused with artificial cerebrospinal fluid. After washout and a baseline sample period, adenosine at various concentrations was infused through the fiber for 150 min, and samples were collected every 15 min. Results In ligated, but not in sham or normal animals, adenosine perfusion increased norepinephrine in spinal cord microdialysates in a concentration-dependent manner. The effects of adenosine plateaued after 75 min and remained stable until the end of the experiment. Intravenous injection of selective adenosine A1 and A2 receptor antagonists revealed that adenosine's effect on spinal norepinephrine release was A1 receptor mediated. Conclusions This is the first study to provide direct evidence that adenosine is able to release norepinephrine in spinal cord dorsal horns in living animals. However, this effect was only seen in animals after spinal nerve ligation. These data are consistent with behavioral studies demonstrating that adenosine's antinociceptive effects in rats after spinal nerve ligation is totally dependent on intact spinal noradrenergic terminals and can be blocked by spinal alpha 2-adrenergic receptor antagonists.

2015 ◽  
Vol 35 (26) ◽  
pp. 9580-9594 ◽  
Author(s):  
K. J. Gerhold ◽  
R. Drdla-Schutting ◽  
S. D. Honsek ◽  
L. Forsthuber ◽  
J. Sandkuhler

2003 ◽  
Vol 99 (5) ◽  
pp. 1175-1179 ◽  
Author(s):  
Xiaoying Zhu ◽  
James C. Eisenach

Background The mechanisms underlying neuropathic pain are incompletely understood and its treatment is often unsatisfactory. Spinal cyclooxygenase-2 (COX-2) expression is upregulated after peripheral inflammation, associated with spinal prostaglandin production leading to central sensitization, but the role of COX isoenzymes in sensitization after nerve injury is less well characterized. The current study was undertaken to determine whether COX-1 was altered in this model. Methods Male rats underwent partial sciatic nerve transsection (PSNT) or L5-L6 spinal nerve ligation (SNL). Four weeks after PSNT and 4 h, 4 days, or 2 weeks after SNL, COX-1 immunohistochemistry was performed on the L2-S2 spinal cord. Results COX-1 immunoreactivity (COX-1-IR) was unaffected 4 h after SNL. In contrast, 4 days after SNL, the number of COX-1-IR cells increased in the ipsilateral spinal cord. COX-1-IR increased in cells with glial morphology in the superficial laminae, but decreased in the rest of the ipsilateral spinal cord 4 weeks after PSNT and 2 weeks after SNL. These changes in immunostaining were greatest at the L5 level. Conclusion These data suggest that COX-1 expression in the spinal cord is not static, but changes in a time- and laminar-dependent manner after nerve injury. These anatomic data are consistent with observations by others that spinally administered specific COX-1 inhibitors may be useful to prevent and treat neuropathic pain.


Neuron ◽  
2014 ◽  
Vol 81 (6) ◽  
pp. 1443 ◽  
Author(s):  
Rita Bardoni ◽  
Vivianne L. Tawfik ◽  
Dong Wang ◽  
Amaury François ◽  
Carlos Solorzano ◽  
...  

2021 ◽  
Vol 17 ◽  
pp. 174480692110033
Author(s):  
Travis Okerman ◽  
Taylor Jurgenson ◽  
Madelyn Moore ◽  
Amanda H Klein

Research presented here sought to determine if opioid induced tolerance is linked to activity changes within the PI3Kγ-AKT-cGMP-JNK intracellular signaling pathway in spinal cord or peripheral nervous systems. Morphine or saline injections were given subcutaneously twice a day for five days (15 mg/kg) to male C57Bl/6 mice. A separate cohort of mice received spinal nerve ligation (SNL) one week prior to the start of morphine tolerance. Afterwards, spinal cord, dorsal root ganglia, and sciatic nerves were isolated for quantifying total and phosphorylated- JNK levels, cGMP, and gene expression analysis of Pik3cg, Akt1, Pten, and nNos1. This pathway was downregulated in the spinal cord with increased expression in the sciatic nerve of morphine tolerant and morphine tolerant mice after SNL. We also observed a significant increase in phosphorylated- JNK levels in the sciatic nerve of morphine tolerant mice with SNL. Pharmacological inhibition of PI3K or JNK, using thalidomide, quercetin, or SP600125, attenuated the development of morphine tolerance in mice with SNL as measured by thermal paw withdrawal. Overall, the PI3K/AKT intracellular signaling pathway is a potential target for reducing the development of morphine tolerance in the peripheral nervous system. Continued research into this pathway will contribute to the development of new analgesic drug therapies.


2015 ◽  
Vol 56 (5) ◽  
pp. 1307 ◽  
Author(s):  
Hee Youn Hwang ◽  
Enji Zhang ◽  
Sangil Park ◽  
Woosuk Chung ◽  
Sunyeul Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document