Reactive astrocytes express p53 in the spinal cord of transgenic mice expressing a human Cu/Zn SOD mutation

Neuroreport ◽  
1999 ◽  
Vol 10 (18) ◽  
pp. 3939-3943 ◽  
Author(s):  
Kyu Jung Cho ◽  
Yoon Hee Chung ◽  
Chung-min Shin ◽  
Dong Hoon Shin ◽  
Yong Sik Kim ◽  
...  
Neuroreport ◽  
1998 ◽  
Vol 9 (7) ◽  
pp. 1503-1506 ◽  
Author(s):  
Choong Ik Cha ◽  
Jong-Min Kim ◽  
Dong Hoon Shin ◽  
Yong Sik Kim ◽  
Jun Kim ◽  
...  

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Hong Fan ◽  
Kun Zhang ◽  
Lequn Shan ◽  
Fang Kuang ◽  
Kun Chen ◽  
...  

Neuron ◽  
1999 ◽  
Vol 23 (2) ◽  
pp. 297-308 ◽  
Author(s):  
Toby G Bush ◽  
Narman Puvanachandra ◽  
Catherine H Horner ◽  
Anabella Polito ◽  
Thor Ostenfeld ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Xuankang Wang ◽  
Zhihao Zhang ◽  
Zhijie Zhu ◽  
Zhuowen Liang ◽  
Xiaoshuang Zuo ◽  
...  

After spinal cord injury (SCI), reactive astrocytes can be classified into two distinctive phenotypes according to their different functions: neurotoxic (A1) astrocytes and neuroprotective (A2) astrocytes. Our previous studies proved that photobiomodulation (PBM) can promote motor function recovery and improve tissue repair after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM contributes to repair after SCI by regulating the activation of astrocytes. Male rats subjected to clip-compression SCI were treated with PBM for two consecutive weeks, and the results showed that recovery of motor function was improved, the lesion cavity size was reduced, and the number of neurons retained was increased. We determined the time course of A1/A2 astrocyte activation after SCI by RNA sequencing (RNA-Seq) and verified that PBM inhibited A1 astrocyte activation and promoted A2 astrocyte activation at 7 days postinjury (dpi) and 14 dpi. Subsequently, potential signaling pathways related to A1/A2 astrocyte activation were identified by GO function analysis and KEGG pathway analysis and then studied in animal experiments and preliminarily analyzed in cultured astrocytes. Next, we observed that the expression of basic fibroblast growth factor (bFGF) and transforming growth factor-β (TGF-β) was upregulated by PBM and that both factors contributed to the transformation of A1/A2 astrocytes in a dose-dependent manner. Finally, we found that PBM reduced the neurotoxicity of A1 astrocytes to dorsal root ganglion (DRG) neurons. In conclusion, PBM can promote better recovery after SCI, which may be related to the transformation of A1/A2 reactive astrocytes.


2009 ◽  
Vol 29 (4) ◽  
pp. 1093-1104 ◽  
Author(s):  
S. Codeluppi ◽  
C. I. Svensson ◽  
M. P. Hefferan ◽  
F. Valencia ◽  
M. D. Silldorff ◽  
...  

2013 ◽  
Vol 51 ◽  
pp. 104-112 ◽  
Author(s):  
Siew-Na Lim ◽  
Stacy J. Gladman ◽  
Simon C. Dyall ◽  
Urva Patel ◽  
Nabeel Virani ◽  
...  

PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8141 ◽  
Author(s):  
Zhida Su ◽  
Yimin Yuan ◽  
Jingjing Chen ◽  
Li Cao ◽  
Yanling Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document