Transtympanic tetrodotoxin alters the VOR and Fos labeling in the vestibular complex

Neuroreport ◽  
2001 ◽  
Vol 12 (14) ◽  
pp. 3051-3055 ◽  
Author(s):  
Dale W. Saxon ◽  
John H. Anderson ◽  
Alvin J. Beitz
Keyword(s):  
1995 ◽  
Vol 74 (3) ◽  
pp. 1362-1366 ◽  
Author(s):  
J. A. Huwe ◽  
E. H. Peterson

1. We visualized the central axons of 32 vestibular afferents from the posterior canal by extracellular application of horseradish peroxidase, reconstructed them in three dimensions, and quantified their morphology. Here we compare the descending limbs of central axons that differ in parent axon diameter. 2. The brain stem distribution of descending limb terminals (collaterals and associated varicosities) varies systematically with parent axon diameter. Large-diameter afferents concentrate their terminals in rostral regions of the medial/descending nuclei. As axon diameter decreases, there is a significant shift of terminal concentration toward the caudal vestibular complex and adjacent brain stem. 3. Rostral and caudal regions of the medial/descending nuclei have different labyrinthine, cerebellar, intrinsic, commissural, and spinal connections; they are believed to play different roles in head movement control. Our data help clarify the functions of large- and small-diameter afferents by showing that they contribute differentially to rostral and caudal vestibular complex.


1994 ◽  
Vol 634 (2) ◽  
pp. 191-202 ◽  
Author(s):  
J. Rodrigo ◽  
O. Uttenthal ◽  
M.L. Bentura ◽  
N. Maeda ◽  
K. Mikoshiba ◽  
...  

2000 ◽  
Vol 78 (11) ◽  
pp. 945-957 ◽  
Author(s):  
Shigemi Mori ◽  
Toshihiro Matsui ◽  
Futoshi Mori ◽  
Katsumi Nakajima ◽  
Kiyoji Matsuyama

In high decerebrate cats, pulse train microstimulation of a restricted region of the midline cerebellar white matter produced a generalized increase in postural muscle tone in the neck, trunk, and limb extensor muscles, and air-stepping of all four legs on a stationary surface. On the moving belt of a treadmill, such stimulation produced well coordinated, fore- and hindlimb locomotion as evoked by stimulating the mesencephalic locomotor region (MLR). Microinjection of a neural tracer into the cerebellar locomotion-inducing site resulted in a bilateral retrograde labeling of cells limited to the fastigial nuclei simultaneously with anterograde labeling of fibers projecting bilaterally to the medial pontomedullary reticular formation (mPMRF) the vestibular complex and upper cervical segments. These results have led to our proposition that the effective cerebellar locomotor region (CLR) corresponds to the midline region of the hook bundle of Russell. Passing through this structure are crossed fastigioreticular and fastigiovestibular fibers, together with fastigiospinal fibers. Subsequently, we showed that CLR stimulation resulted in simultaneous short-latency synaptic activation of long-descending reticulospinal and vestibulospinal cells with high synaptic security. Clearly, the fastigial nucleus possesses potential capability to recruit and regulate posture- and locomotor-related subprograms which are distributed within the brainstem and spinal cord by the in-parallel activation of fastigiospinal, fastigioreticular, and fastigiovestibular pathways.Key words: cerebellar locomotor region (CLR), fastigial nucleus, hook bundle of Russell, reticulospinal cell, vestibulospinal cell.


2008 ◽  
Vol 17 (5-6) ◽  
pp. 347-359
Author(s):  
Gin McCollum

While some aspects of neuroanatomical organization are related to packing and access rather than to function, other aspects of anatomical/physiological organization are directly related to function. The mathematics of symmetry groups can be used to determine logical structure in projections and to relate it to function. This paper reviews two studies of the symmetry groups of vestibular projections that are related to the spatial functions of the vestibular complex, including gaze, posture, and movement. These logical structures have been determined by finding symmetry groups of two vestibular projections directly from physiological and anatomical data. Logical structures in vestibular projections are distinct from mapping properties such as the ability to maintain two- and three-dimensional coordinate systems; rather, they provide anatomical/physiological foundations for these mapping properties. The symmetry group of the direct projection from the semicircular canal primary afferents to neck motor neurons is that of the cube (O, the octahedral group), which can serve as a discrete skeleton for coordinate systems in three-dimensional space. The symmetry group of the canal projection from the secondary vestibular afferents to the inferior olive and thence to the cerebellar uvula-nodulus is that of the square (D8), which can support coordinates for the horizontal plane. While the mathematical relationship between these symmetry groups and functions of the vestibular complex are clear, these studies open a larger question: what is the causal logic by which neural centers and their intrinsic organization affect each other and behavior? The relationship of vestibular projection symmetry groups to spatial function make them ideal projections for investigating this causal logic. The symmetry group results are discussed in relationship to possible ways they communicate spatial structure to other neural centers and format spatial functions such as body movements. These two projection symmetry groups suggest that all vestibular projections may have symmetry groups significantly related to function, perhaps all to spatial function.


Sign in / Sign up

Export Citation Format

Share Document