Early identification of patients at risk for symptomatic vasospasm after aneurysmal subarachnoid hemorrhage

2000 ◽  
Vol 28 (4) ◽  
pp. 984-990 ◽  
Author(s):  
Adnan I. Qureshi ◽  
Gene Y. Sung ◽  
Alexander Y. Razumovsky ◽  
Karen Lane ◽  
Robert N. Straw ◽  
...  
1997 ◽  
Vol 86 (5) ◽  
pp. 830-839 ◽  
Author(s):  
Andrew D. Firlik ◽  
Anthony M. Kaufmann ◽  
Charles A. Jungreis ◽  
Howard Yonas

✓ In this study the authors have examined the effects of transluminal angioplasty on cerebral blood flow (CBF) in the management of intractable vasospasm following aneurysmal subarachnoid hemorrhage (SAH). Fourteen consecutively enrolled patients underwent attempted angioplasty with or without intraarterial infusion of papaverine. Twelve patients underwent pre- and postangioplasty xenon-enhanced computerized tomography (Xe-CT) scanning to measure regional CBF in 55 to 65 regions of interest (ROIs) per patient. Angioplasty was possible in 13 (93%) of 14 patients, with angiographically demonstrated improvement in all 13. Twelve (92%) of the 13 patients were neurologically improved following angioplasty; seven (58%) of the 12 patients who improved had a complete reversal of all delayed ischemic deficits. Angioplasty significantly decreased the mean number of ROIs at risk (11.4 ROIs pre- and 0.9 ROIs postangioplasty) (p < 0.00005, t-test). All patients had a reduction in the number of ROIs at risk after angioplasty; six (50%) of 12 no longer had any ROIs remaining at risk after angioplasty. Angioplasty significantly increased the mean CBF within at-risk ROIs (13 ml/100 g/minute pre- and 44 ml/100 g/minute postangioplasty) (p < 0.00005, t-test). All patients experienced an improvement in mean CBF in at-risk ROIs after angioplasty, with the mean CBF improving to above 20 ml/100 g/minute in all cases. No differences in the degree of improvement were found in patients who received intraarterial papaverine compared with those who did not. In the majority of patients with refractory vasospasm following SAH, angioplasty effectively dilated spastic arteries, reversed delayed neurological deficits, and significantly improved CBF in areas of brain at risk of infarction.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Rajat Dhar ◽  
Hemant Misra ◽  
Michael Diringer

Introduction: Sanguinate is a dual-action oxygen transfer and carbon monoxide-releasing agent with efficacy in animal models of focal brain ischemia and established safety in health volunteers. We performed a dose-escalation study in subarachnoid hemorrhage (SAH) patients at risk for delayed cerebral ischemia (DCI) to evaluate tolerability and explore efficacy in improving cerebral blood flow (CBF) and flow-metabolism balance to vulnerable brain regions. Methods: 12 subjects were studied over three dose tiers: 160mg/kg, 240 mg/kg, and 320 mg/kg, with close safety evaluation prior to proceeding to higher doses. After baseline 15 O-PET measurement of global and regional CBF and oxygen extraction fraction (OEF), Sanguinate was infused over two hours; PET was repeated immediately after and again at 24-hours. Vulnerable brain regions were defined as those with baseline OEF ≥ 0.5. Results: Sanguinate infusion resulted in a significant but transient rise in mean arterial pressure (115±15 to 127±13 mm Hg) that was not dose-dependent. No adverse physiologic or clinical effects were observed with infusion at any dose. Global CBF did not rise significantly after Sanguinate (42.6±7 to 45.9±9 ml/100g/min, p=0.18). However, in the 28% of regions classified as vulnerable, Sanguinate resulted in a significant rise in CBF (42.2±11 to 51.2±18) and reduction in OEF (0.6±0.1 to 0.5±0.11, both p<0.001). The increase in regional CBF was only seen with the two higher doses but OEF improved in all tiers. However, response was attenuated at 24-hours. Conclusions: We safely administered a novel oxygen transport and vasodilating agent to a cohort of patients with SAH. Sanguinate infusion appeared to improve CBF and flow-metabolism balance in vulnerable brain regions and warrants further study in those at-risk for DCI. Higher or repeat dosing may be required for sustained efficacy.


Stroke ◽  
2021 ◽  
Author(s):  
Michael Veldeman ◽  
Walid Albanna ◽  
Miriam Weiss ◽  
Soojin Park ◽  
Anke Hoellig ◽  
...  

Background and Purpose: Aneurysmal subarachnoid hemorrhage is a devastating disease leaving surviving patients often severely disabled. Delayed cerebral ischemia (DCI) has been identified as one of the main contributors to poor clinical outcome after subarachnoid hemorrhage. The objective of this review is to summarize existing clinical evidence assessing the diagnostic value of invasive neuromonitoring (INM) in detecting DCI and provide an update of evidence since the 2014 consensus statement on multimodality monitoring in neurocritical care. Methods: Three invasive monitoring techniques were targeted in the data collection process: brain tissue oxygen tension (p ti O 2 ), cerebral microdialysis, and electrocorticography. Prospective and retrospective studies as well as case series (≥10 patients) were included as long as monitoring was used to detect DCI or guide DCI treatment. Results: Forty-seven studies reporting INM in the context of DCI were included (p ti O 2 : N=21; cerebral microdialysis: N=22; electrocorticography: N=4). Changes in brain oxygen tension are associated with angiographic vasospasm or reduction in regional cerebral blood flow. Metabolic monitoring with trend analysis of the lactate to pyruvate ratio using cerebral microdialysis, identifies patients at risk for DCI. Clusters of cortical spreading depolarizations are associated with clinical neurological worsening and cerebral infarction in selected patients receiving electrocorticography monitoring. Conclusions: Data supports the use of INM for the detection of DCI in selected patients. Generalizability to all subarachnoid hemorrhage patients is limited by design bias of available studies and lack of randomized trials. Continuous data recording with trend analysis and the combination of INM modalities can provide tailored treatment support in patients at high risk for DCI. Future trials should test interventions triggered by INM in relation to cerebral infarctions.


2019 ◽  
Vol 73 (4) ◽  
pp. 334-344 ◽  
Author(s):  
Ryan J. Delahanty ◽  
JoAnn Alvarez ◽  
Lisa M. Flynn ◽  
Robert L. Sherwin ◽  
Spencer S. Jones

Sign in / Sign up

Export Citation Format

Share Document