Effects of propofol with EDTA on cell damage induced by oxygen and glucose deprivation (OGD) in PC12 cell cultures and middle cerebral artery (MCA) occlusion in mice

2006 ◽  
Vol 23 (Supplement 37) ◽  
pp. 155
Author(s):  
H. Hara ◽  
Y. Kotani ◽  
Y. Nakajima ◽  
M. Shimazawa
1996 ◽  
Vol 16 (4) ◽  
pp. 599-604 ◽  
Author(s):  
Zheng G. Zhang ◽  
David Reif ◽  
James Macdonald ◽  
Wen Xue Tang ◽  
Dietgard K. Kamp ◽  
...  

We tested the effects of administration of a selective neuronal nitric oxide synthase (nNOS) inhibitor, ARL 17477, on ischemic cell damage and regional cerebral blood flow (rCBF), in rats subjected to transient (2 h) middle cerebral artery (MCA) occlusion and 166 h of reperfusion (n = 48) and in rats without MCA occlusion (n = 25), respectively. Animals were administered ARL 17477 (i.v.): 10 mg/kg; 3 mg/kg; 1 mg/kg; N-nitro-L-arginine (L-NA) 10 mg/kg L-NA 1 mg/kg; and Vehicle. Administration of ARL 17477 1 mg/kg, 3 mg/kg and 10 mg/kg reduced ischemic infarct volume by 53 (p < 0.05), 23, and 6.5%, respectively. L-NA 1 mg/kg and 10 mg/kg increased infarct volume by 2 and 15%, respectively (p > 0.05). Administration of ARL 17477 (10 mg/kg) significantly (p < 0.05) decreased rCBF by 27 ± 5.3 and 24 ± 14.08% and cortical NOS activity by 86 ± 14.9 and 91 ± 8.9% at 10 min or 3 h, respectively, and did not alter mean arterial blood pressure (MABP). L-NA (10 mg/kg) significantly reduced rCBF by 23 ± 9.8% and NOS activity by 81 ± 7% and significantly (p < 0.05) increased MABP. Treatment with 3 mg/kg and 1 mg/kg ARL 17477 reduced rCBF by only 2.4 ± 4.5 and 0%, respectively, even when NOS activity was reduced by 63 ± 13.4 and 45 ± 15.7% at 3 h, respectively, (p < 0.05). The data demonstrate that ARL 17477 inhibits nNOS in the rat brain and causes a dose-dependent reduction in infarct volume after transient MCA occlusion.


1988 ◽  
Vol 8 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Hitoshi Nakayama ◽  
W. Dalton Dietrich ◽  
Brant D. Watson ◽  
Raul Busto ◽  
Myron D. Ginsberg

The histopathological and hemodynamic consequences of photochemically induced middle cerebral artery (MCA) thrombosis and recanalization were studied in the rat. Recanalization of the thrombosed MCA segment was achieved by the topical application of nimodipine at 1 h following photochemically induced occlusion. Pathological consequences of permanent and temporary occlusion were compared by morphometric procedures 7 days following thrombus formation. Rats with permanent thrombosis exhibited consistent infarction of both striatum and cortex. MCA recanalization at 1 h was associated with a significant reduction in total infarct volume. In recanalized rats, small cortical infarcts, confined to the peripheral MCA territory, were observed in only three of six rats. In contrast, a mixed pattern of infarction and ischemic cell damage was documented throughout the striatum in all rats. Local CBF (ICBF), measured autoradiographically, was significantly reduced in the MCA territory following 1 h of MCA occlusion, especially within the striatum. At 1 h after recanalization, lCBF recovered within the previously ischemic brain regions to >50% of control. Perfusion deficits were detected by carbon black infusion within focal areas of the striatum following reperfusion. Thus, cortical neurons appear to tolerate 1 h of MCA occlusion in this model. In contrast, reperfusion following 1 h of photochemically induced MCA occlusion gives rise to selective injury to the striatum.


1988 ◽  
Vol 8 (3) ◽  
pp. 436-439 ◽  
Author(s):  
Koji Abe ◽  
Kyuya Kogure ◽  
Takao Watanabe

The effect of PN200-110, a novel calcium antagonist, on the formation of brain edema was examined with rats using a middle cerebral artery (MCA) occlusion model. PN200-110 was effective in preventing the formation of brain edema in 6-h ischemia and in 3-h reperfusion following 3-h ischemia, which were cases in which great accumulations of calcium were autoradiographically observed. Furthermore, PN200-110 diminished the excessive accumulation of calcium in the MCA area involved. These results indicate that an inhibition of the massive influx of calcium into brain cells by PN200-110 may partially ameliorate cell damage, resulting in prevention of brain edema.


Neurosurgery ◽  
1986 ◽  
Vol 18 (4) ◽  
pp. 397-401 ◽  
Author(s):  
Bruce I. Tranmer ◽  
Cordell E. Gross ◽  
Ted S. Keller ◽  
Glenn W. Kindt

Abstract Five consecutive patients with acute neurological deficits after middle cerebral artery (MCA) occlusion were given emergency treatment with colloidal volume expansion. In each case, the diagnosis was confirmed promptly by computed tomography and cerebral angiography. Aggressive volume expansion therapy was started 2 to 18 hours (mean, 11 hr) after the onset of the neurological deficit. The mean colloidal volume used was 920 ml/day for an average of 4 days. During volume expansion, the mean cardiac output increased 57% from 4.6 + 0.6 to 7.2 + 1.9 litres/min (P &lt; 0.05). The mean hematocrit decreased 19% from 46 + 3% to 37 + 4% (P &lt; 0.01). The mean arterial blood pressure remained stable, and the pulmonary artery wedge pressure was maintained at &lt; 15 mm Hg. Three patients improved dramatically with volume expansion therapy and have returned to their previous life-styles. Two patients made partial recoveries and manage at home with nursing care. The three patients who improved dramatically were young (aged &lt;34) and, when compared to the older patients, they had greater increases in cardiac output (67% vs. 19%). No major complications or deaths were attributed to the volume expansion therapy. We propose that intravascular volume expansion and its concomitant augmentation of the cardiovascular dynamics may be effective in the treatment of acute neurological deficits after acute MCA occlusion.


1987 ◽  
Vol 7 (5) ◽  
pp. 557-562 ◽  
Author(s):  
S. Komatsumoto ◽  
S. Nioka ◽  
J. H. Greenberg ◽  
K. Yoshizaki ◽  
V. H. Subramanian ◽  
...  

The energy metabolism of the brain has been measured in a middle cerebral artery (MCA) occlusion model in the cat utilizing 31P-nuclear magnetic resonance (NMR). 31P-NMR spectra were serially obtained during 2 h of ischemia and a subsequent 4-h recovery period. The ratio of creatine phosphate (PCr) to inorganic phosphate (Pi) (PCr/Pi) showed a precipitous decrease in parallel with changes in electroencephalographic (EEG) amplitude in severe strokes during ischemia as well as during recirculation. Animals with mild strokes, as determined by EEG criteria, exhibited a much smaller decrease in PCr/Pi during ischemia. In the severe strokes, there was a splitting and significant shift of the Pi peak immediately after occlusion. In addition, the shifted Pi peak rapidly increased and remained elevated throughout the study. In the mild strokes, Pi also increased, but not as markedly. Intracellular pH determination by chemical shift of the Pi peak revealed a decrease from 7.1 to 6.2–6.3 during ischemia and the subsequent recovery period in the animals with severe strokes, whereas the pH in the animals with mild strokes did not show a significant change. A gradual decrease in adenosine triphosphate (ATP) to 57–79% of the control was exhibited in severely stroked animals during both the ischemia and the recovery period, whereas there was no change in ATP in the mild stroked animals. These results suggest that the dynamic process of pathophysiological changes in an MCA occlusion model in the cat leads to significant differences in cerebral metabolism between animals with mild and severe strokes.


1985 ◽  
Vol 62 (6) ◽  
pp. 831-838 ◽  
Author(s):  
Brian T. Andrews ◽  
Norman L. Chater ◽  
Philip R. Weinstein

✓ Forty-seven patients with middle cerebral artery (MCA) stenosis and 18 patients with MCA occlusion underwent extracranial-intracranial arterial bypass procedures. Patients presented with a history of transient ischemic attacks (TIA's), reversible ischemic neurological deficits, TIA's after initial stroke, stroke-in-evolution, or completed stroke. Angiography revealed that the MCA stenosis ranged from 70% to over 95%. Two patients (4.3%) in the stenosis group had a perioperative stroke (within 30 days of operation). There was no perioperative mortality. In the occlusion group, no patient had a perioperative stroke, and one patient (5.5%) died from a non-neurological disease. The TIA's resolved completely in 90% of the patients with stenosis and in 91.6% of those with occlusion. No patient with MCA stenosis had a late ipsilateral stroke, although five had a contralateral or vertebrobasilar stroke. One patient with MCA occlusion had a late ipsilateral stroke. The bypass patency rate at late follow-up review was 100%. The results of intracranial-extracranial arterial bypass procedures appear to be similar for patients with either stenosis or occlusion of the MCA. Symptomatic relief of TIA's was excellent and, in two patients with progressive stroke-in-evolution, the deficit was stabilized. The incidence of postoperative ipsilateral stroke was low in patients with TIA's alone or with TIA's after an initial stroke, but among patients with completed stroke, improvement was confined to slight reduction in the neurological deficit.


1991 ◽  
Vol 11 (5) ◽  
pp. 753-761 ◽  
Author(s):  
G. Mies ◽  
S. Ishimaru ◽  
Y. Xie ◽  
K. Seo ◽  
K.-A. Hossmann

The ischemic threshold of protein synthesis and energy state was determined 1, 6, and 12 h after middle cerebral artery (MCA) occlusion in rats. Local blood flow and amino acid incorporation were measured by double tracer autoradiography, and local ATP content by substrate-induced bioluminescence. The various images were evaluated at the striatal level in cerebral cortex by scanning with a microdensitometer with 75 μm resolution. Each 75 × 75 μm digitized image pixel was then converted into the appropriate units of either protein synthesis, ATP content, or blood flow. The ischemic threshold was defined as the flow rate at which 50% of pixels exhibited complete metabolic suppression. One hour after MCA occlusion, the threshold of protein synthesis was 55.3 ± 12.0 ml 100 g−1 min−1 and that of energy failure was 18.5 ± 9.8 ml 100 g−1 min−1. After 6 and 12 h of MCA occlusion, the threshold of protein synthesis did not change (52.0 ± 9.6 and 56.0 ± 6.5 ml 100 g−1 min−1, respectively) but the threshold of energy failure increased significantly at 12 h following MCA occlusion to 31.9 ± 9.7 ml 100 g−1 min−1 ( p < 0.05 compared to 1 h ATP threshold value; all values are mean ± SD). In focal cerebral ischemia, therefore, the threshold of energy failure gradually approached that of protein synthesis. Our results suggest that with increasing duration of ischemia, survival of brain tissue is determined by the high threshold of persisting inhibition of protein synthesis and not by the much lower one of acute energy failure. If the ischemic penumbra is considered to comprise the region in which cerebral protein synthesis is suppressed and energy state is preserved, it follows that the size of the penumbra decreases with the duration of ischemia.


2000 ◽  
Vol 20 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Tobias Neumann-Haefelin ◽  
Otto W. Witte

Transient middle cerebral artery (MCA) occlusion results in substantially smaller cortical infarcts than permanent MCA occlusion if reperfusion is initiated within the first few hours. Only little information is available on the long-term functional outcome of the cortical regions “salvaged” by early reperfusion. To address this issue we examined basic electrophysiologic parameters in vitro using standard extracellular recording techniques at 7 and 28 days after transient MCA occlusion (1- and 2-hour ischemia) in rats. Both neocortical areas ipsi- and contralateral to MCA occlusion were systematically mapped to delineate the extent of periinfarct and remote alterations. In the periinfarct region we found a significant reduction of field potential amplitudes up to 3 mm when measuring from the infarct border at 7 days and up to 7 mm at 28 days. Paired-pulse inhibition, an indicator of GABAergic transmission, was only moderately impaired in this region at 7 days and not significantly different from control at 28 days. Remote effects were observed both ipsi- and contralaterally. Ipsilaterally they were restricted to a region close to the midline (presumably motor cortex) and were most likely attributable to the degeneration of corticostriatal connections. The extent of the contralateral excitability changes was clearly related to the size of the neocortical infarcts with large infarcts resulting in the widespread reduction of field potential amplitudes and an impairment of paired-pulse inhibition. The results show that there is a relatively large periinfarct region with decreased overall excitability after transient MCA occlusion which is likely to have a profound effect on perilesional processes involved in functional recovery. Remote excitability changes may contribute to the functional deficit and are probably related to deafferentation.


Sign in / Sign up

Export Citation Format

Share Document