Transient Cerebral Ischemia Activates Processing of xbp1 Messenger RNA Indicative of Endoplasmic Reticulum Stress

Author(s):  
Wulf Paschen ◽  
Christoph Aufenberg ◽  
Svenja Hotop ◽  
Thorsten Mengesdorf
2003 ◽  
Vol 23 (4) ◽  
pp. 449-461 ◽  
Author(s):  
Wulf Paschen ◽  
Christoph Aufenberg ◽  
Svenja Hotop ◽  
Thorsten Mengesdorf

Cells respond to conditions associated with endoplasmic reticulum (ER) dysfunction with activation of the unfolded protein response, characterized by a shutdown of translation and induction of the expression of genes coding for ER stress proteins. The genetic response is based on IRE1-induced processing of xbp1 messenger RNA (mRNA), resulting in synthesis of new XBP1proc protein that functions as a potent transcription factor for ER stress genes. xbp1 processing in models of transient global and focal cerebral ischemia was studied. A marked increase in processed xbp1 mRNA levels during reperfusion was observed, most pronounced (about 35-fold) after 1-h occlusion of the right middle cerebral artery. The rise in processed xbp1 mRNA was not paralleled by a similar increase in XBP1proc protein levels because transient ischemia induces severe suppression of translation. As a result, mRNA levels of genes coding for ER stress proteins were only slightly increased, whereas mRNA levels of heat-shock protein 70 rose about 550-fold. Under conditions associated with ER dysfunction, cells require activation of the entire ER stress-induced signal transduction pathway, to cope with this severe form of stress. After transient cerebral ischemia, however, the block of translation may prevent synthesis of new XBP1proc protein and thus hinder recovery from ischemia-induced ER dysfunction.


2021 ◽  
Author(s):  
Angus Y Choi ◽  
Jia Wen Xian ◽  
Sum Yi Ma ◽  
Zhixiu Lin ◽  
Chun Wai Chan

Stroke is the second leading cause of death in worldwide, in which cerebral ischemia accounts for 87% of all cases. The building up of endoplasmic reticulum stress in cerebral ischemia contributes to the disruption of blood brain barrier and neuronal cell death. The only FDA-approved drug, recombinant tissue plasminogen activator, is still of limited use due to the narrow window period and lack of neuroprotective effect. Therefore, it is necessary to explore alternative treatment on cerebral ischemia. Tianma-Gouteng decoction is a traditional Chinese Medicine prescription used to treat brain diseases in China. In this study, we investigated the neuroprotective effect of a water extract consisting of Gastrodia elata and Uncaria rhynchophylla, which are the two main herbs in the decoction. Cerebral ischemia was induced in rats using middle cerebral artery occlusion. GUW-treated rats have significantly reduced infarction volume and recovered neurological functions. The number of protein aggregates and caspase-12 positive cells were significantly inhibited. In vitro oxygen-glucose deprivation / reoxygenation stroke model demonstrated that the unfolded protein response proteins GRP78 and PDI were upregulated by GUW. Less ubiquitin puncta and normalized ubiquitin distribution indicated the reduction in endoplasmic reticulum stress. Furthermore, a lower Evan blue signal and MMPsense signal was observed, suggesting that GUW may preserve the blood brain barrier integrity through inhibiting MMP activity. Taken together, this suggested that GUW protected ischemic neurons and the blood brain barrier through inhibiting endoplasmic reticulum stress.


Dose-Response ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. 155932581881063 ◽  
Author(s):  
Jiangang Cao ◽  
Yu Zhang ◽  
Tianyi Wang ◽  
Bo Li

Osteoarthritis (OA) affects elderly population worldwide and endoplasmic reticulum (ER) stress is known to be positively correlated with OA development. Previous reports prove the cytoprotective effects of baicalin on chondrocytes, whereas the mechanisms are hardly reported. Hence, we aimed to investigate the links between OA, ER stress, and baicalin. Chondrocytes from patients with OA were subjected to H2O2 treatment with or without baicalin pretreatment, and cell viability was assessed via Cell Counting Kit-8. Messenger RNA (mRNA) amounts of apoptosis-related genes (Bax, Bcl-2, and Caspase-3), extracellular matrix (ECM)-related genes (Collange I, Collange II, Aggrecan, and Sox9) and ER stress hallmarks (binding immunoglobulin protein [BiP] C/EBP homologous protein [CHOP]) were evaluated via quantitative real-time PCR. Bax, Bcl-2, BiP, and CHOP protein levels were analyzed via Western blot. Baicalin suppressed the changes in cell viability and apoptosis-related gene expressions caused by H2O2. Reactive oxygen species and glutathione/oxidized glutathione assay showed that H2O2 enhanced oxidative stress. Baicalin suppressed H2O2-induced downregulation of mRNA expression of ECM-related genes. Moreover, baicalin reduced H2O2-stimulated increase in oxidative stress and the expression of ER stress hallmarks. Endoplasmic reticulum stress inducer abolished the protective activities, whereas ER stress inhibitor did not exhibit extra protective effects. Baicalin pretreatment protected patient-derived chondrocytes from H2O2 through ER stress inhibition.


2015 ◽  
Vol 5 (2) ◽  
pp. 178-187 ◽  
Author(s):  
Gagandip Poone ◽  
Henrik Hasseldam ◽  
Nina Munkholm ◽  
Rune Rasmussen ◽  
Nina Grønberg ◽  
...  

Nature ◽  
2008 ◽  
Vol 457 (7230) ◽  
pp. 736-740 ◽  
Author(s):  
Tomás Aragón ◽  
Eelco van Anken ◽  
David Pincus ◽  
Iana M. Serafimova ◽  
Alexei V. Korennykh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document