LOADING TESTS AND THE RELATIONSHIP OF CALCIUM AND MAGNESIUM RENAL EXCRETION IN ESSNTIAL HYPERTENSION

2000 ◽  
Vol 18 ◽  
pp. S36
Author(s):  
E. Bobrova
1999 ◽  
Vol 283 (1-2) ◽  
pp. 119-128 ◽  
Author(s):  
Iain R. Brown ◽  
Alasdair M. McBain ◽  
John Chalmers ◽  
Ian W. Campbell ◽  
Ewan R. Brown ◽  
...  

1972 ◽  
Vol 55 (2) ◽  
pp. 245-252 ◽  
Author(s):  
D. N. KALU ◽  
CARMEL HILLYARD ◽  
G. V. FOSTER

SUMMARY The effect of glucagon on bone was studied in rats. Urinary hydroxyproline excretion and incorporation of [3H]proline into bone hydroxyproline were used as indices of bone collagen breakdown and formation respectively. Parathyroid extract (15 USP units/rat/h, i.v.), infused into thyroparathyroidectomized animals, increased urinary hydroxyproline excretion. This increase was nullified by simultaneous administration of glucagon (50 μg/rat/h, i.v.). Rats treated with glucagon for 12 days (30 μg/100 g/day, s.c.) excreted slightly less hydroxyproline in their urine than controls. In both intact and thyroparathyroidectomized rats, glucagon (10 μg/100 g/h, s.c.) decreased incorporation of [3H]proline into bone. Similar results were obtained in nephrectomized rats, evidence that changes produced by glucagon were not solely due to alterations in proline pool size caused by increased renal excretion. From these data it is concluded that: (1) glucagon can inhibit bone resorption (the effect being slight in normal rats, but easily demonstrable in parathyroid hormone-treated thyroparathyroidectomized rats), (2) release of endogenous calcitonin is not required to produce this effect, (3) parathyroid hormone and glucagon may act on the same target cell in bone, (4) inhibition of skeletal resorption may contribute to glucagon-induced hypocalcaemia, and (5) the hormone possibly decreases bone formation. Since pharmacological doses of glucagon were used in our studies, the relationship of the observations made to the physiological role of glucagon is unknown.


1952 ◽  
Vol 30 (6) ◽  
pp. 515-519
Author(s):  
Jules Tuba ◽  
Kazie A. Siluch ◽  
Margaret I. Robinson ◽  
Neil B. Madsen

Increased levels of serum alkaline phosphatase were produced in growing rats by diets low in calcium or by the addition of sodium oxalate or rhubarb to diets containing adequate amounts of calcium. In addition, variations from normal in levels of serum phosphorus, calcium, and magnesium, as well as the ash of the tibiae, indicate that the animals were rachitic. The amount of calcium retained in the bodies of animals maintained on a diet containing rhubarb, which has a high oxalate content, were very much lower than in growing rats fed a normal calcium diet.


Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Leon Dmochowski

Electron microscopy has proved to be an invaluable discipline in studies on the relationship of viruses to the origin of leukemia, sarcoma, and other types of tumors in animals and man. The successful cell-free transmission of leukemia and sarcoma in mice, rats, hamsters, and cats, interpreted as due to a virus or viruses, was proved to be due to a virus on the basis of electron microscope studies. These studies demonstrated that all the types of neoplasia in animals of the species examined are produced by a virus of certain characteristic morphological properties similar, if not identical, in the mode of development in all types of neoplasia in animals, as shown in Fig. 1.


Sign in / Sign up

Export Citation Format

Share Document