CORRELATION BETWEEN WORK ABSORBED, PEAK TORQUE DECREMENT AND EXERCISE-INDUCED MUSCLE DAMAGE

2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S239
Author(s):  
D Chapman ◽  
M Newton ◽  
K Nosaka ◽  
Z Zainuddin ◽  
G Morgan ◽  
...  
2014 ◽  
Vol 9 (2) ◽  
pp. 256-264 ◽  
Author(s):  
François Bieuzen ◽  
Jeanick Brisswalter ◽  
Christopher Easthope ◽  
Fabrice Vercruyssen ◽  
Thierry Bernard ◽  
...  

Background:Compression garments are increasingly popular in long-distance running events where they are used to limit cumulative fatigue and symptoms associated with mild exercise-induced muscle damage (EIMD). However, the effective benefits remain unclear.Objective:This study examined the effect of wearing compression stockings (CS) on EIMD indicators. Compression was applied during or after simulated trail races performed at competition pace in experienced off-road runners.Methods:Eleven highly trained male runners participated in 3 simulated trail races (15.6 km: uphill section 6.6 km, average gradient 13%, and downhill section 9.0 km, average gradient –9%) in a randomized crossover trial. The effect of wearing CS while running or during recovery was tested and compared with a control condition (ie, run and recovery without CS; non- CS). Indicators of muscle function, muscle damage (creatine kinase; CK), inflammation (interleukin-6; IL-6), and perceived muscle soreness were recorded at baseline (1 h before warm-up) and 1, 24, and 48 h after the run.Results:Perceived muscle soreness was likely to be lower when participants wore CS during trail running compared with the control condition (1 h postrun, 82% chance; 24 h postrun, 80% chance). A likely or possibly beneficial effect of wearing CS during running was also found for isometric peak torque at 1 h postrun (70% chance) and 24 h postrun (60% chance) and throughout the recovery period on countermovement jump, compared with non-CS. Possible, trivial, or unclear differences were observed for CK and IL-6 between all conditions.Conclusion:Wearing CS during simulated trail races mainly affects perceived leg soreness and muscle function. These benefits are visible very shortly after the start of the recovery period.


2020 ◽  
Vol 41 (09) ◽  
pp. 596-602
Author(s):  
Maria Alejandra Camacho ◽  
Esperanza Herrera ◽  
Jose Angelo Barela ◽  
Diana Carolina Delgado-Diaz

AbstractThis study aimed at determining the effect of kinesio-taping (KT) on muscle performance and delayed onset muscle soreness (DOMS) after exercise induced muscle damaged. Sixty-six healthy men volunteered to participate (age:18–25 y/o), who performed 200 isokinetic lengthening contractions of the dominant quadriceps. Then subjects were randomized to either control (no treatment), sham (no tape tension), or KT (10% tape tension) groups. Muscle performance was assessed by peak torque and muscular work during maximal isometric and concentric isokinetic contractions. DOMS intensity was assessed using a visual analog scale. Measurements were taken pre-exercise (Pre), 48 h and 96 h post-exercise. Repeated measures ANOVA was used for comparisons within group, and ANCOVA for comparisons among groups. Muscle damage was confirmed in all participants by an increase in CK activity level (p<0.01). Decrease in isometric and isokinetic peak torque was detected at 48 h in the control and sham groups (p<0.01). Muscular work decreased in all groups at 48 h (p<0.01). No differences between groups were detected in muscular performance variables. Increase in DOMS intensity was determined in all groups at 48 h. Comparisons between groups showed lower DOMS intensity in the KT group at 48 h. KT decreased DOMS intensity perception after exercise-induced muscle damage; however, it did not impact muscular performance.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2274 ◽  
Author(s):  
Leonardo C. R. Lima ◽  
Renan V. Barreto ◽  
Natália M. Bassan ◽  
Camila C. Greco ◽  
Benedito S. Denadai

This study examined the effects of anthocyanin-rich antioxidant juice (AJ) on the recovery of exercise-induced muscle damage (EIMD) and the running economy (RE) following downhill running (DHR). Thirty healthy young men were randomly divided into two blinded groups and consumed either AJ or placebo (PLA) for nine days (240 mL twice-a-day). On day 5, the participants from both groups ran downhill (−15%) for 30 min at 70% of their maximal oxygen uptake (VO2max) speeds. The changes in RE (oxygen uptake (VO2) and perceived effort (PE) during 5-min runs at 80%VO2max) and EIMD (isometric peak torque (IPT), muscle soreness (SOR) and serum creatine kinase activity (CK)) were compared over time and between the groups on the 4 days following DHR. VO2 and PE increased (p < 0.05) immediately following DHR for both groups and remained elevated for PLA until 48h post-DHR while fully recovering 24 h post-DHR for AJ. SOR was greater (p < 0.05) for PLA throughout the study. CK increased for both groups and was greater (p < 0.05) for PLA at 96 h post-DHR. IPT decreased for both groups but recovered faster for AJ (72 h) compared to PLA (no full recovery). AJ accelerated recovery of RE and EIMD and should be used in specific contexts, but not chronically.


2021 ◽  
pp. 655-664
Author(s):  
Seher Çağdaş Şenışık ◽  
Bedrettin Akova ◽  
Ufuk Şekir ◽  
Hakan Gür

There is a need to investigate the role of muscle architecture on muscle damage responses induced by exercise. The aim of this study was to determine the effect of muscle architecture and muscle length on eccentric exercise-induced muscle damage responses. Eccentric exercise-induced muscle damage was performed randomly to the elbow flexor (EF), knee extensor (KE), and knee flexor (KF) muscle groups with two week intervals in 12 sedentary male subjects. Before and after each eccentric exercise (immediately after, on the 1st, 2nd, 3rd, and 7th days) range of motion, delayed onset muscle soreness, creatine kinase activity, myoglobin concentration and isometric peak torque in short and long muscle positions were evaluated. Furthermore, muscle volume and pennation angle of each muscle group was evaluated before initiating the eccentric exercise protocol. Pennation angle and muscle volume was significantly higher and the workload per unit muscle volume was significantly lower in the KE muscles compared with the KF and EF muscles (p < 0.01). EF muscles showed significantly higher pain levels at post-exercise days 1 and 3 compared with the KE (p < 0.01-0.001) and KF (p < 0.01) muscles. The deficits in range of motion were higher in the EF muscles compared to the KE and KF muscles immediately after (day 0, p < 0.01), day 1 (p < 0.05-0.01), and day 3 (p < 0.05) evaluations. The EF muscles represented significantly greater increases in CK and Mb levels at day 1, 3, and 7 than the KE muscles (p < 0.05-0.01). The CK and Mb levels were also significantly higher in the KF muscles compared with the KE muscles (p < 0.05, p < 0.01 respectively). The KF and EF muscles represented higher isometric peak torque deficits in all the post-exercise evaluations at muscle short position (p < 0.05-0.001) compared with the KE muscle after eccentric exercise. Isometric peak torque deficits in muscle lengthened position was significantly higher in EF in all the post-exercise evaluations compared with the KE muscle (p < 0.05-0.01). According to the results of this study it can be concluded that muscle structural differences may be one of the responsible factors for the different muscle damage responses following eccentric exercise in various muscle groups.


2002 ◽  
Vol 11 (4) ◽  
pp. 305-314 ◽  
Author(s):  
Peter M. Tiidus ◽  
Joel Cort ◽  
Sarah J. Woodruff ◽  
Pamela Bryden

Objectives:To evaluate ultrasound’s effectiveness after eccentric-exercise-induced muscle damage.Participants:22 subjects.Intervention:Random assignment to ultrasound (UT) or placebo (PT). Ultrasound was applied immediately and 24, 48, and 72 h after 50 maximum eccentric contractions of the biceps.Outcome Measures:Concentric and eccentric peak torques, resting elbow angle, and subjective muscle soreness were measured before and 24, 48, 72, and 96 h afterward.Results:No significant differences between UT and PT for biceps concentric or eccentric peak torque were noted. Both groups exhibited significant (P< .01) depression in eccentric and concentric peak torques with a slow return toward preexercise values over 96 h. Resting elbow angles for both groups were significantly lower than preexercise values up to 96 h (P< .01). Muscle soreness increased significantly (P< .05) at 24 and 48 h and returned to preexercise levels by 96 h.Conclusions:Daily ultrasound did not influence recovery after eccentric-exercise-induced muscle damage.


2010 ◽  
Vol 35 (3) ◽  
pp. 270-277 ◽  
Author(s):  
Emma Cockburn ◽  
Emma Stevenson ◽  
Philip R. Hayes ◽  
Paula Robson-Ansley ◽  
Glyn Howatson

Exercise-induced muscle damage (EIMD) leads to decrements in muscle performance and increases in intramuscular enzymes measured in the plasma, and to delayed onset of muscle soreness (DOMS), partly due to the activation of degradative pathways. It has been shown that milk-based carbohydrate-protein (CHO-P) can limit changes in markers of EIMD, possibly by attenuating protein degradation and (or) increasing protein synthesis. However, the timing of supplementation has received limited attention, and this may alter the response. This study examined the effects of acute milk-based CHO-P supplementation timing on the attenuation of EIMD. Four independent matched groups of 8 healthy males consumed milk-based CHO-P before (PRE), immediately after (POST), or 24 h after (TWENTY-FOUR) muscle-damaging exercise. Active DOMS, isokinetic muscle performance, reactive strength index (RSI), and creatine kinase (CK) were assessed immediately before and 24, 48, and 72 h after EIMD. POST and TWENTY-FOUR demonstrated a benefit in limiting changes in active DOMS, peak torque, and RSI over 48 h, compared with PRE. PRE showed a possible benefit in reducing increases in CK over 48 h and limiting changes in other variables over 72 h. Consuming milk-based CHO-P after muscle-damaging exercise is more beneficial in attenuating decreases in muscle performance and increases in active DOMS at 48 h than ingestion prior to exercise.


2012 ◽  
Vol 37 (4) ◽  
pp. 680-689 ◽  
Author(s):  
Hsin-Lian Chen ◽  
Kazunori Nosaka ◽  
Alan J. Pearce ◽  
Trevor C. Chen

This study investigated whether maximal voluntary isometric contractions (MVC-ISO) would attenuate the magnitude of eccentric exercise-induced muscle damage. Young untrained men were placed into one of the two experimental groups or one control group (n = 13 per group). Subjects in the experimental groups performed either two or 10 MVC-ISO of the elbow flexors at a long muscle length (20° flexion) 2 days prior to 30 maximal isokinetic eccentric contractions of the elbow flexors. Subjects in the control group performed the eccentric contractions without MVC-ISO. No significant changes in maximal voluntary concentric contraction peak torque, peak torque angle, range of motion, upper arm circumference, plasma creatine kinase (CK) activity and myoglobin concentration, muscle soreness, and ultrasound echo intensity were evident after MVC-ISO. Changes in the variables following eccentric contractions were smaller (P < 0.05) for the 2 MVC-ISO group (e.g., peak torque loss at 5 days after exercise, 23% ± 3%; peak CK activity, 1964 ± 452 IU·L–1; peak muscle soreness, 46 ± 4 mm) or the 10 MVC-ISO group (13% ± 3%, 877 ± 198 IU·L–1, 30 ± 4 mm) compared with the control (34% ± 4%, 6192 ± 1747 IU·L–1, 66 ± 5 mm). The 10 MVC-ISO group showed smaller (P < 0.05) changes in all variables following eccentric contractions compared with the 2 MVC-ISO group. Therefore, two MVC-ISO conferred potent protective effects against muscle damage, whereas greater protective effect was induced by 10 MVC-ISO, which can be used as a strategy to minimize muscle damage.


Author(s):  
Mikhail Santos Cerqueira ◽  
Ingrid Martins de França ◽  
Mauro Bezerra Montello ◽  
Daniel Kovacs ◽  
Wouber Hérickson de Brito Vieira

Background: Ischemic preconditioning (IPC) has been used to improve exercise performance, but its role in protecting against exercise-induced muscle damage (EIMD) is still unclear. Objective: To investigate the effects of IPC on the indirect markers of EIMD when compared to placebo. Methods: 30 healthy young men, with no recent experience in lower limb strength training, will be recruited. Subjects will be allocated randomly into two groups: IPC or placebo. The IPC group will undergo 4 x 5 min of occlusion (with individualized total occlusion pressure), interspersed with 5 min of reperfusion. The placebo group will be submitted to the same protocol, but with minimum pressure (10mmHg) being applied during the occlusion period. After the interventions, volunteers will be submitted to muscle damage induced by isokinetic exercise (10 sets of 12 maximum eccentric repetitions) in the non-dominant femoral quadriceps. The primary outcome will be isometric peak torque, measured both before and up to 72 hours after exercise. Secondary outcomes include rate of torque development, muscle soreness, knee range of motion, thigh circumference and blood levels of creatine kinase. Discussion: The results of this trial will indicate whether the effects of IPC are superior to placebo in the protection against EIMD


2008 ◽  
Vol 33 (4) ◽  
pp. 775-783 ◽  
Author(s):  
Emma Cockburn ◽  
Philip R. Hayes ◽  
Duncan N. French ◽  
Emma Stevenson ◽  
Alan St Clair Gibson

Exercise-induced muscle damage (EIMD) leads to the degradation of protein structures within the muscle. This may subsequently lead to decrements in muscle performance and increases in intramuscular enzymes and delayed-onset muscle soreness (DOMS). Milk, which provides protein and carbohydrate (CHO), may lead to the attenuation of protein degradation and (or) an increase in protein synthesis that would limit the consequential effects of EIMD. This study examined the effects of acute milk and milk-based protein–CHO (CHO-P) supplementation on attenuating EIMD. Four independent groups of 6 healthy males consumed water (CON), CHO sports drink, milk-based CHO-P or milk (M), post EIMD. DOMS, isokinetic muscle performance, creatine kinase (CK), and myoglobin (Mb) were assessed immediately before and 24 and 48 h after EIMD. DOMS was not significantly different (p > 0.05) between groups at any time point. Peak torque (dominant) was significantly higher (p < 0.05) 48 h after CHO-P compared with CHO and CON, and M compared with CHO. Total work of the set (dominant) was significantly higher (p < 0.05) 48 h after CHO-P and M compared with CHO and CON. CK was significantly lower (p < 0.05) 48 h after CHO-P and M compared with CHO. Mb was significantly lower (p < 0.05) 48 h after CHO-P compared with CHO. At 48 h post-EIMD, milk and milk-based protein–CHO supplementation resulted in the attenuation of decreases in isokinetic muscle performance and increases in CK and Mb.


Sign in / Sign up

Export Citation Format

Share Document