INDUCTION OF INCREASED GRAFT-VERSUS-HOST DISEASE BY MOUSE SPLEEN CELLS SENSITIZED IN VITRO TO ALLOGENEIC TUMOR

1976 ◽  
Vol 22 (6) ◽  
pp. 589-594 ◽  
Author(s):  
Albert B. Einstein ◽  
Martin A. Cheever ◽  
Alexander Fefer
Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2661-2667
Author(s):  
J Mysliwietz ◽  
S Thierfelder

Abstract A hamster antimouse CD3 monoclonal antibody (MoAb) opened the way to experimental studies on the suppression of allograft rejection and cytokine-related morbidity after treatment with antibodies modulating the CD3/T-cell receptor complex (CD3/TCR). Because earlier attempts to suppress graft-versus-host disease (GVHD) in patients by in vitro treatment of donor marrow with anti-CD3 MoAb had remained inconclusive, we used a rat IgG2b antimouse CD3 MoAb (17A2) with fewer side effects to analyze suppression of GVHD in the mouse model. Detailed phenotyping of blood, spleen, and lymphnode T cells after the injection of 400 micrograms 17A2 in C57BL/6 mice showed 60% CD3 downmodulation and 50% T- cell depletion for spleen cells. Injection of these spleen cells, together with bone marrow cells, in fully mismatched preirradiated CBA mice delayed GVHD by only 6 days. Ex vivo treatment of donor cells with 17A2 was not effective. In contrast, conditioning of marrow recipients with a single injection of 17A2 delayed 50% GVHD mortality by 100 days and prevented GVHD altogether after prolonged treatment, with survivors showing complete chimerism and specific transplantation tolerance. This difference in antibody effect contrasts with earlier experiences with nonmodulating but more strongly T-cell-depleting MoAbs of the same isotype, which prevent GVHD no matter whether applied in vitro or injected into donor or recipient mice. Our data indicate that CD3/TCR reexpression in marrow recipients with no circulating 17A2 is the reason why ex vivo donor cell treatment with anti-CD3 MoAb is comparatively ineffective. Our data, which allow separate evaluation of cell-depleting and cell-modulating antibody activity, help to explain previous clinical failure to suppress GVHD and provide evidence in favor of conditioning the marrow recipient with anti-CD3 MoAb as a therapeutic alternative.


2011 ◽  
Vol 208 (12) ◽  
pp. 2489-2496 ◽  
Author(s):  
Uri Sela ◽  
Peter Olds ◽  
Andrew Park ◽  
Sarah J. Schlesinger ◽  
Ralph M. Steinman

Foxp3+ regulatory T cells (T reg cells) effectively suppress immunity, but it is not determined if antigen-induced T reg cells (iT reg cells) are able to persist under conditions of inflammation and to stably express the transcription factor Foxp3. We used spleen cells to stimulate the mixed leukocyte reaction (MLR) in the presence of transforming growth factor β (TGF-β) and retinoic acid. We found that the CD11chigh dendritic cell fraction was the most potent at inducing high numbers of alloreactive Foxp3+ cells. The induced CD4+CD25+Foxp3+ cells appeared after extensive proliferation. When purified from the MLR, iT reg cells suppressed both primary and secondary MLR in vitro in an antigen-specific manner. After transfer into allogeneic mice, iT reg cells persisted for 6 mo and prevented graft versus host disease (GVHD) caused by co-transferred CD45RBhi T cells. Similar findings were made when iT reg cells were transferred after onset of GVHD. The CNS2 intronic sequence of the Foxp3 gene in the persisting iT reg cells was as demethylated as the corresponding sequence of naturally occurring T reg cells. These results indicate that induced Foxp3+ T reg cells, after proliferating and differentiating into antigen-specific suppressive T cells, can persist for long periods while suppressing a powerful inflammatory disease.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3555-3555
Author(s):  
Dongchang Zhao ◽  
Yu-Hong Chen ◽  
James Young ◽  
Elizabeth Shen ◽  
Tangsheng Yi ◽  
...  

Abstract Abstract 3555 Poster Board III-492 Chronic graft versus host disease (GVHD) is considered an autoimmune-like disease mediated by donor CD4+ T cells, but the role and origin of the autoreactive T cells remain controversial. Here, we report that, in a chronic GVHD model of MHC-matched DBA/2 (H-2d) donor to BALB/c (H-2d) host, donor spleen cells induced autoimmune-like chronic GVHD in thymectomized allogeneic BALB/c but not in syngeneic DBA/2 recipients. The spleen cells from the former but not the latter recipients induced autoimmune-like disease in the secondary DBA/2 recipients, indicating that autoreactive donor CD4+ T cells from transplants are expanded and contribute to chronic GVHD pathogenesis. In addition, we found that both auto- and alloreactive donor CD4+ T cells generated from primary chronic GVHD recipients via serial in vivo and in vitro expansion proliferated to donor and host DC stimulation and both induced autoimmune-like disease in syngeneic and allogeneic recipients. Furthermore, the clonal expansion and TCR spreading of the autoreactive T cells in chronic GVHD recipients were following the alloreactive T cells, as revealed by TCR-spectrum typing and skewing of TCR-CDR3 length; No dual TCR was expressed by the donor-type T cells with both allo- and autoreactivity; and the autoreactive hybridoma T clones proliferated to stimulation by both syngeneic and allogeneic DCs. Taken together, these results demonstrate that donor CD4+ T cells that possess both allo- and autoreactivity in transplants are expanded in recipients and contribute to chronic GVHD pathogenesis, and the allo- and autoreactivity of the donor T cells can be mediated by a single TCR. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2661-2667 ◽  
Author(s):  
J Mysliwietz ◽  
S Thierfelder

A hamster antimouse CD3 monoclonal antibody (MoAb) opened the way to experimental studies on the suppression of allograft rejection and cytokine-related morbidity after treatment with antibodies modulating the CD3/T-cell receptor complex (CD3/TCR). Because earlier attempts to suppress graft-versus-host disease (GVHD) in patients by in vitro treatment of donor marrow with anti-CD3 MoAb had remained inconclusive, we used a rat IgG2b antimouse CD3 MoAb (17A2) with fewer side effects to analyze suppression of GVHD in the mouse model. Detailed phenotyping of blood, spleen, and lymphnode T cells after the injection of 400 micrograms 17A2 in C57BL/6 mice showed 60% CD3 downmodulation and 50% T- cell depletion for spleen cells. Injection of these spleen cells, together with bone marrow cells, in fully mismatched preirradiated CBA mice delayed GVHD by only 6 days. Ex vivo treatment of donor cells with 17A2 was not effective. In contrast, conditioning of marrow recipients with a single injection of 17A2 delayed 50% GVHD mortality by 100 days and prevented GVHD altogether after prolonged treatment, with survivors showing complete chimerism and specific transplantation tolerance. This difference in antibody effect contrasts with earlier experiences with nonmodulating but more strongly T-cell-depleting MoAbs of the same isotype, which prevent GVHD no matter whether applied in vitro or injected into donor or recipient mice. Our data indicate that CD3/TCR reexpression in marrow recipients with no circulating 17A2 is the reason why ex vivo donor cell treatment with anti-CD3 MoAb is comparatively ineffective. Our data, which allow separate evaluation of cell-depleting and cell-modulating antibody activity, help to explain previous clinical failure to suppress GVHD and provide evidence in favor of conditioning the marrow recipient with anti-CD3 MoAb as a therapeutic alternative.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4237
Author(s):  
Abdellatif Bouazzaoui ◽  
Ahmed A. H. Abdellatif ◽  
Faisal A. Al-Allaf ◽  
Neda M. Bogari ◽  
Mohiuddin M. Taher ◽  
...  

Systemic steroids are used to treat acute graft-versus-host disease (aGVHD) caused by allogenic bone marrow transplantation (allo-BMT); however, their prolonged use results in complications. Hence, new agents for treating aGVHD are required. Recently, a new compound A (CpdA), with anti-inflammatory activity and reduced side effects compared to steroids, has been identified. Here, we aimed to determine whether CpdA can improve the outcome of aGVHD when administered after transplantation in a mouse model (C57BL/6 in B6D2F1). After conditioning with 9Gy total body irradiation, mice were infused with bone marrow (BM) cells and splenocytes from either syngeneic (B6D2F1) or allogeneic (C57BL/6) donors. The animals were subsequently treated (3 days/week) with 7.5 mg/kg CpdA from day +15 to day +28; the controls received 0.9% NaCl. Thereafter, the incidence and severity of aGVHD in aGVHD target organs were analyzed. Survival and clinical scores did not differ significantly; however, CpdA-treated animals showed high cell infiltration in the target organs. In bulk mixed lymphocyte reactions, CpdA treatment reduced the cell proliferation and expression of inflammatory cytokines and chemokines compared to controls, whereas levels of TNF, IL-23, chemokines, and chemokine receptors increased. CpdA significantly reduced proliferation in vitro but increased T cell infiltration in target organs.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3693-3701 ◽  
Author(s):  
Ypke V. J. M. van Oosterhout ◽  
Liesbeth van Emst ◽  
Anton V. M. B. Schattenberg ◽  
Wil J. M. Tax ◽  
Dirk J. Ruiter ◽  
...  

Abstract This study evaluated the anti-graft versus host disease (GVHD) potential of a combination of immunotoxins (IT), consisting of a murine CD3 (SPV-T3a) and CD7 (WT1) monoclonal antibody both conjugated to deglycosylated ricin A. In vitro efficacy data demonstrated that these IT act synergistically, resulting in an approximately 99% elimination of activated T cells at 10−8 mol/L (about 1.8 μg/mL). Because most natural killer (NK) cells are CD7+, NK activity was inhibited as well. Apart from the killing mediated by ricin A, binding of SPV-T3a by itself impaired in vitro cytotoxic T-cell cytotoxicity. Flow cytometric analysis revealed that this was due to both modulation of the CD3/T-cell receptor complex and activation-induced cell death. These results warranted evaluation of the IT combination in patients with refractory acute GVHD in an ongoing pilot study. So far, 4 patients have been treated with 3 to 4 infusions of 2 or 4 mg/m2 IT combination, administered intravenously at 48-hour intervals. The T1/2 was 6.7 hours, and peak serum levels ranged from 258 to 3210 ng/mL. Drug-associated side effects were restricted to limited edema, fever, and a modest rise of creatine kinase levels. One patient developed low-titer antibodies against ricin A. Infusions were associated with an immediate drop of circulating T cells, followed by a more gradual but continuing elimination of T/NK cells. One patient mounted an extensive CD8 T-cell response directly after treatment, not accompanied with aggravating GVHD. Two patients showed nearly complete remission of GVHD, despite unresponsiveness to the extensive pretreatment. These findings justify further investigation of the IT combination for treatment of diseases mediated by T cells.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 3140-3147 ◽  
Author(s):  
Joshua A. Grass ◽  
Tamim Wafa ◽  
Aaron Reames ◽  
David Wages ◽  
Laurence Corash ◽  
...  

Abstract Photochemical treatment (PCT) with the psoralen S-59 and long wavelength ultraviolet light (UVA) inactivates high titers of contaminating viruses, bacteria, and leukocytes in human platelet concentrates. The present study evaluated the efficacy of PCT to prevent transfusion-associated graft-versus-host disease (TA-GVHD) in vivo using a well-characterized parent to F1 murine transfusion model. Recipient mice in four treatment groups were transfused with 108 splenic leukocytes. (1) Control group mice received syngeneic splenic leukocyte transfusions; (2) GVHD group mice received untreated allogeneic splenic leukocytes; (3) gamma radiation group mice received gamma irradiated (2,500 cGy) allogeneic splenic leukocytes; and (4) PCT group mice received allogeneic splenic leukocytes treated with 150 μmol/L S-59 and 2.1 J/cm2UVA. Multiple biological and clinical parameters were used to monitor the development of TA-GVHD in recipient mice over a 10-week posttransfusion observation period: peripheral blood cell levels, spleen size, engraftment by donor T cells, thymic cellularity, clinical signs of TA-GVHD (weight loss, activity, posture, fur texture, skin integrity), and histologic lesions of liver, spleen, bone marrow, and skin. Mice in the control group remained healthy and free of detectable disease. Mice in the GVHD group developed clinical and histological lesions of TA-GVHD, including pancytopenia, marked splenomegaly, wasting, engraftment with donor derived T cells, and thymic hypoplasia. In contrast, mice transfused with splenic leukocytes treated with (2,500 cGy) gamma radiation or 150 μmol/L S-59 and 2.1 J/cm2 UVA remained healthy and did not develop detectable TA-GVHD. Using an in vitro T-cell proliferation assay, greater than 105.1 murine T cells were inactivated by PCT. Therefore, in addition to inactivating high levels of pathogenic viruses and bacteria in PC, these data indicate that PCT is an effective alternative to gamma irradiation for prevention of TA-GVHD.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2560-2569 ◽  
Author(s):  
M Sykes ◽  
MW Harty ◽  
GL Szot ◽  
DA Pearson

Abstract We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)- promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4–2. BALB/c mice receiving 2.5 x 10(5) 2B-4–2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5- day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.


Sign in / Sign up

Export Citation Format

Share Document