REVERSAL OF COSTIMULATION BY CELL SURFACE EXPRESSION OF AN ANTI-CD152 SINGLE CHAIN ANTIBODY.

2000 ◽  
Vol 69 (Supplement) ◽  
pp. S342
Author(s):  
Prupti Malde ◽  
Anthony Dorling ◽  
Andrew T. George ◽  
Robert I. Lechler
2000 ◽  
Vol 69 (6) ◽  
pp. 1209-1217 ◽  
Author(s):  
Sanjay Kulkarni ◽  
Philmore O. Holman ◽  
Adam Kopelan ◽  
Gijis A. van Seventer ◽  
Jean M. van Seventer ◽  
...  

1996 ◽  
Vol 318 (2) ◽  
pp. 591-596 ◽  
Author(s):  
Qian YUAN ◽  
Kathryn L. STRAUCH ◽  
Roy R. LOBB ◽  
Martin E. HEMLER

A single-chain antibody construct was prepared containing the VH and VL regions of anti-(integrin α4) antibody HP1/2, an interchain linker and a KDEL endoplasmic reticulum retention sequence. Intracellular expression of this single-chain antibody caused cell-surface expression of α4β1 integrin to be decreased by 80% on selected RD cells and by 65–100% on selected Jurkat cells, relative to mock transfectants. Immunoprecipitation from single-chain-antibody-transfected cells showed that the single-chain antibody was complexed with the integrin α4 and β1 subunits, and the diminished sizes of α4 and β1 were consistent with impaired maturation. Furthermore, cell adhesion to α4β1 ligands [VCAM-1 (vascular cell adhesion molecule-1), FN40 (40 kDa chymotryptic fragment of fibronectin) and CS1] was greatly impaired in both RD and Jurkat cells, and cell spreading on immobilized FN40 protein was almost completely eliminated. Thus we conclude that intracellular single-chain antibodies may be used to reduce or eliminate cell-surface expression of a specific integrin, with specific functional consequences. This approach should be generally applicable to other integrin subunits.


2001 ◽  
Vol 114 (6) ◽  
pp. 1101-1113
Author(s):  
M. Gawaz ◽  
F. Besta ◽  
J. Ylanne ◽  
T. Knorr ◽  
H. Dierks ◽  
...  

Beta3 integrin adhesion molecules play important roles in wound repair and the regulation of vascular development and three beta3 integrin isoforms (beta3-A, -B, -C) have been described so far. Surface expression of beta3 integrins is dynamically regulated through internalization of beta3 integrins, however, the molecular mechanisms are understood incompletely. To evaluate the role of the cytoplasmic domain of beta3 integrins for internalization, we have generated single chain chimeras with variant and mutated forms of beta3 cytoplasmic domains. Upon transient transfection into chinese hamster ovary cells, it was found that the beta3-A chimera had strongly reduced cell surface expression compared with the corresponding beta3-B, or beta3-C fusion proteins, or the tail-less constructs, whereas steady state levels of all chimeras were near identical. Studies employing cytoplasmic domain mutants showed that the NITY motif at beta3-A 756–759 is critical for plasma membrane expression of beta3-A. Furthermore, delivery of beta3-A to the cell surface was specifically modulated by the cytoplasmic protein beta3-endonexin, a previously described intracellular protein. Coexpression of the native, long form of beta3-endonexin, which does not interact with the beta3 tail, acted as a dominant negative inhibitor of beta3-A-internalization and enhanced steady-state surface expression of the beta3-A-chimera. Furthermore, anti-beta3 antibody-induced internalization of the native beta3 integrin (alpha(IIb)beta3 was dramatically reduced for the Tyr(759)-Ala substitution mutant (alpha(IIb)beta3) (Y759A) and expression of the long isoform of beta3-endonexin substantially decreased the internalization of wild-type alpha(IIb)beta3. Thus, the NITY motif of the beta-chain cytoplasmic domain is involved in stimulated internalization of the beta3 integrin A isoform and beta3-endonexin appears to couple the beta3-A isoform to a specific receptor-recycling pathway.


2003 ◽  
Vol 30 (9) ◽  
pp. 1292-1298 ◽  
Author(s):  
Jeffrey P. Northrop ◽  
Mark Bednarski ◽  
Susan O. Barbieri ◽  
Amy T. Lu ◽  
Dee Nguyen ◽  
...  

2020 ◽  
Author(s):  
Florent Colomb ◽  
Leila B. Giron ◽  
Leticia Kuri Cervantes ◽  
Tongcui Ma ◽  
Samson Adeniji ◽  
...  

Author(s):  
Mona Aslani ◽  
Arman Ahmadzadeh ◽  
Zahra Aghazadeh ◽  
Majid Zaki-Dizaji ◽  
Laleh Sharifi ◽  
...  

Background: : Based on the encouraging results of phase III clinical trial of β-D-mannuronic acid (M2000) (as a new anti-inflammatory drug) in patients with RA, in this study, we aimed to evaluate the effects of this drug on the expression of chemokines and their receptors in PBMCs of RA patients. Methods:: PBMCs of RA patients and healthy controls were separated and the patients' cells were treated with low, moderate and high doses (5, 25 and 50 μg/mL) of M2000 and optimum dose (1 μg/mL) of diclofenac, as a control in RPMI-1640 medium. Real-time PCR was used for evaluating the mRNA expression of CXCR3, CXCR4, CCR2, CCR5 and CCL2/MCP-1. Cell surface expression of CCR2 was investigated using flow cytometry. Results:: CCR5 mRNA expression reduced significantly, after treatment of the patients' cells with all three doses of M2000 and optimum dose of diclofenac. CXCR3 mRNA expression down-regulated significantly followed by treatment of these cells with moderate and high doses of M2000 and optimum dose of diclofenac. CXCR4 mRNA expression declined significantly after treatment of these cells with moderate and high doses of M2000. CCL2 mRNA expression significantly reduced only followed by treatment of these cells with high dose of M2000, whereas, mRNA and cell surface expressions of CCR2 diminished significantly followed by treatment of these cells with high dose of M2000 and optimum dose of diclofenac. Conclusion:: According to our results, M2000 through the down-regulation of chemokines and their receptors may restrict the infiltration of immune cells into the synovium.


1990 ◽  
Vol 64 (10) ◽  
pp. 4776-4783 ◽  
Author(s):  
M E Andrew ◽  
D B Boyle ◽  
P L Whitfeld ◽  
L J Lockett ◽  
I D Anthony ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document