CooperSurgical Oxygen Sensor

2021 ◽  
Vol 51 (19) ◽  
pp. 150-151
Keyword(s):  
1999 ◽  
Author(s):  
Philip B. Keating ◽  
Michael F. Hinds ◽  
Steven J. Davis

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 952 ◽  
Author(s):  
Wangi Sari ◽  
Simon Leigh ◽  
James Covington

In this paper we report on the development tungsten oxide based chemiresistive sensors for the monitoring of oxygen at low temperatures (T ≤ 400 °C) in dry and humid air. The sensors were deposited onto alumina substrate by a combination of spin coating and a photolithographic process to define the sensing area. Our results show that the sensors comply with a linear relationship over a 0 to 20% concentration range, with a high response towards oxygen. The highest response was observed at 350 °C (ΔR/Ra = 7.8) in humid and in dry air (ΔR/Ra = 18). This result is a significant improvement over our previous experiments and we believe to take the concept of a metal-oxide based oxygen sensor a step closer.


Extremophiles ◽  
2001 ◽  
Vol 5 (5) ◽  
pp. 351-354 ◽  
Author(s):  
Shaobin Hou ◽  
Claude Belisle ◽  
Summer Lam ◽  
Mikhail Piatibratov ◽  
Victor Sivozhelezov ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Schaner ◽  
Ly-Binh-An Tran ◽  
Bassem I. Zaki ◽  
Harold M. Swartz ◽  
Eugene Demidenko ◽  
...  

AbstractDuring a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.


Sign in / Sign up

Export Citation Format

Share Document