scholarly journals GAMMA-DELTA T CELLS MEDIATE ALPHA-BETA T CELL ACTIVATION IN ANGIOTENSIN II-INDUCED HYPERTENSION

2021 ◽  
Vol 39 (Supplement 1) ◽  
pp. e287
Author(s):  
Antoine Caillon ◽  
Pierre Paradis ◽  
Ernesto L. Schiffrin
Hypertension ◽  
2018 ◽  
Vol 72 (Suppl_1) ◽  
Author(s):  
Pierre Paradis ◽  
Antoine Caillon ◽  
Ernesto L Schiffrin

Hypertension ◽  
2019 ◽  
Vol 74 (Suppl_1) ◽  
Author(s):  
Antoine Caillon ◽  
Pierre Paradis ◽  
Ernesto L Schiffrin

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Annet Kirabo ◽  
Jing Wu ◽  
Salim R Thabet ◽  
Alfiya T Bikineyeva ◽  
Sergey Dikalov ◽  
...  

Superoxide and inflammation contribute to the genesis of hypertension but the mechanisms involved are not fully understood. We examined the hypothesis that oxidative stress in dendritic cells (DCs) alters endogenous proteins via Isoketal-modification leading to formation of neo-antigens, T cell activation and blood pressure elevation. DCs isolated from mice with angiotensin II-induced hypertension had a significant increase in NADPH oxidase-dependent superoxide production when compared to sham-treated mice (334.0±49.7 versus 65.8±4.5 pmol/mg protein). This was associated with an exuberant DC accumulation of protein-isoketal adducts and activation of IL-6, IL-1β and IL-23 production. DCs from hypertensive mice but not sham mice promoted survival and proliferation of CD8 + T cells in culture. Scavenging of isoketals not only prevented activation and immunogenicity of DCs, but also markedly attenuated angiotensin II-induced hypertension (142.59 ± 8.98 mmHg versus 175.53 ± 5.19 mmHg in controls). Moreover, adaptive transfer of DCs from hypertensive mice primed development of hypertension in mice given a sub-pressor dose of angiotensin II (157.45 ± 33.86 mmHg versus 119.90 ± 17.33 mmHg in controls). These studies show that angiotensin II-induced hypertension activates DCs, in large part by causing superoxide production and formation of isoketals. We propose that Isoketal-modified proteins can be presented as neo-antigens by DCs, which in turn trigger T cell activation leading to hypertension.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Yining Jin ◽  
Omar Kana ◽  
Ramya Kumar ◽  
Rance Nault ◽  
Hannah Garver ◽  
...  

There is considerable evidence for a causative role for T cells in hypertension, including studies with immunosuppressive drugs and T cell-deficient models. Our previous studies showed that soluble mediators from mesenteric perivascular adipose tissue (mPVAT) modulate T cell function. Specifically, conditioned media from mPVAT (mPVAT-CM) from Dahl S rats on a high fat diet (HFD) promoted expression of the pro-inflammatory cytokines, IFNg, IL-17a and GM-CSF, by activated T cells. Furthermore, the Dahl S rats on HFD will later develop hypertension. Hypothesis: mPVAT is stimulated to produce immunomodulatory mediators that promotes Th1/17 differentiation preceding the development of HFD-induced hypertension. We conducted bulk RNA-seq on activated splenocytes cultured in mPVAT-CM from Dahl S rats on either control or HFD for 10 weeks. In accordance with our previous studies, PVAT-CM from HFD-fed rats significantly upregulated many genes associated with IFNg/IL-17 induction, including Mpeg1, Lyz2 and Tnfsf4 (5.0±1.78, 3.70±0.53 and 1.78±0.42 fold over Control diet, respectively). In contrast, Th2/Treg-associated genes, such as Ctla2a (-0.27±0.02) and Ccr4 (-0.41±0.03) were downregulated. We also performed single cell (sc) RNA-seq on the PVAT stromal vascular fraction (SVF) and found that acute inflammatory genes were enriched in the HFD group. Together with the bulk RNA-seq on mPVAT, these data strongly suggest that the pro-inflammatory mPVAT micro-environment may promote Th1/Th17 differentiation. To identify mediators in PVAT-CM that may induce Th1/Th17 differentiation, we compared the bulk RNA-seq on splenocytes cultured in PVAT-CM with bulk RNA-seq conducted on the whole mPVAT itself. We found that a T cell co-stimulatory receptor DPP4 (CD26), which is closely associated with T cell activation was significantly increased in mPVAT from HFD-fed rats (33.4±2.3 HFD vs. 15.3±1.8 Control diet). We also observed an increase in DPP4 global expression from mPVAT SVF in HFD-fed rats, as determined by scRNA-seq. Conclusion: The data suggest that HFD promotes the IFNg and IL-17a pathways in PVAT, which precedes hypertension in Dahl S rats and correlates with an increase in expression of DPP-4, a gene that promotes T cell activation. (NIH P01 HL070687).


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Antoine Caillon ◽  
Pierre Paradis ◽  
Ernesto L Schiffrin

Objective: Both innate (monocyte/macrophages) and adaptive immune cells (T lymphocytes) have been shown to play a role in the development of vascular injury in hypertension. Recently, we demonstrated that a small subset of “innate-like” T lymphocytes, expressing the γ/δ T cell receptor (TCR) rather than the αβ TCR, plays a key role in hypertension and vascular injury. We demonstrated an increased number and activation (CD69 + ) of γδ T cells during the development of hypertension caused by angiotensin (Ang) II infusion, and that deficiency in γδ T cells prevented Ang II-induced hypertension, resistance artery endothelial dysfunction and spleen T-cell activation in mice. We hypothesized that γδ T cells mediate activation of other T cells in hypertension. Method and Results: Fourteen to 15-week old male C57BL/6 wild-type (WT) mice were infused with Ang II (490 ng/kg/min, SC) for 3, 7 and 14 days (n=5-7) and spleen T cell profile was determined by flow cytometry. A correlation was demonstrated between the frequency (FREQ) and the number (#) of activated CD69 + γδ T cells and CD4 + CD69 + T cells (FREQ: r=0.41, P <0.05 and #: r=0.58, P <0.001) and CD8 + CD69 + T cells (FREQ: r=0.36, P <0.05 and #: r=0.50, P <0.01). We also demonstrated a high correlation between the # of CD69 + γδ T cells expressing CD27, a marker of interferon-γ expressing cells and a member of the T-T interaction molecules, with CD4 + CD69 + (r=0.88, P <0.001) and CD8 + CD69 + (r=0.81, P <0.01) T cells after 7 days of Ang II infusion. Conclusion: This study demonstrated an association between CD27 + CD69 + γδ T cells and activated T cells. These results suggest that γδ T cells drive activation of other T cells in Ang II-induced hypertension. Targeting γδ T cells may contribute to reduce inflammation in hypertension.


1996 ◽  
Vol 183 (5) ◽  
pp. 2271-2282 ◽  
Author(s):  
L Wen ◽  
W Pao ◽  
F S Wong ◽  
Q Peng ◽  
J Craft ◽  
...  

The production of class-switched antibodies, particularly immunoglobulin (Ig) G1 and IgE, occurs efficiently in T cell receptor (TCR) alpha-/- mice that are congenitally devoid of alpha/beta T cells. This finding runs counter to a wealth of data indicating that IgG1 and IgE synthesis are largely dependent on the collaboration between B and alpha/beta T cells. Furthermore, many of the antibodies synthesized in TCR alpha-/- mice are reactive to a similar spectrum of self-antigens as that targeted by autoantibodies characterizing human systemic lupus erythematosus (SLE). SLE, too, is most commonly regarded as an alpha/beta T cell-mediated condition. To distinguish whether the development of autoantibodies in TCR alpha-/- mice is due to an intrinsic de-regulation of B cells, or to a heretofore poorly characterized collaboration between B and "non-alpha/beta T" cells, the phenotype has been reconstituted by transfer of various populations of B and non-alpha/beta T cells including cloned gamma/delta T cells derived from TCR alpha-/- mice, to severe combined immunodeficient (SCID) mice. The results establish that the reproducible production of IgG1 (including autoantibodies) is a product of non-alpha/beta T cell help that can be provided by gamma/delta T cells. This type of B-T collaboration sustains the production of germinal centers, lymphoid follicles that ordinarily are anatomical signatures of alpha/beta T-B cell collaboration. Thus, non-alpha/beta T cell help may drive Ig synthesis and autoreactivity under various circumstances, especially in cases of alpha/beta T cell immunodeficiency.


1991 ◽  
Vol 174 (1) ◽  
pp. 293-296 ◽  
Author(s):  
M Iwashima ◽  
M M Davis ◽  
Y H Chien

CD4 and CD8 have been useful surface markers for alpha/beta T cell maturation. In an alpha/beta T cell receptor (TCR) transgenic SCID mice system, it has been shown that alpha/beta TCR alone is sufficient to induce CD4 and CD8 surface expression on thymic T cells. Although the late embryonic thymic gamma/delta T cells are predominately single and double positive, it has not been clear if gamma/delta TCR has a similar capacity. In this study, we show that when transgenes encoding the earliest embryonic gamma/delta TCR are coexpressed with the SCID defect, the gamma/delta transgenes promote the appearance of both the CD4-8- and CD4+8+ T cells in the thymus. Furthermore, the expression of CD4 and CD8 does not require continuous surface gamma/delta TCR expression. These results indicate that gamma/delta TCR alone can promote the CD4/8 surface expression, and may suggest a role for gamma/delta T cells in initiating normal thymic ontogeny.


1993 ◽  
Vol 178 (3) ◽  
pp. 985-996 ◽  
Author(s):  
M J Skeen ◽  
H K Ziegler

Peritoneal gamma/delta T cells from Listeria-immune mice show an enhanced potential to expand when restimulated with antigens or mitogens in vitro (see companion paper [Skeen, M. J., and H. K. Ziegler. 1993. J. Exp. Med. 178:971]). When cocultured with peritoneal alpha/beta T cells, the gamma/delta T cell population expanded preferentially even when the in vitro stimulus was specific for the alpha/beta T cell population. Purified gamma/delta T cells did not respond to alpha/beta T cell-specific stimuli. If isolated T cell subsets were recombined in cell mixing experiments, the resulting proliferative response was greater than additive. Irradiated alpha/beta T cells could enhance the proliferation of responding gamma/delta T cells, but the effect was unidirectional; i.e., irradiated gamma/delta T cells did not stimulate responding gamma/delta T cells. This effect appeared to be cytokine mediated and did not require cell-cell contact. Both recombinant interleukin 2 (rIL-2) and rIL-7 could support the expansion of the gamma/delta T cells, while rIL-7 was only minimally stimulatory for the alpha/beta T cells. The magnitude of the response by gamma/delta T cells to rIL-7 exceeded the response to other in vitro stimuli, including immobilized anti-T cell receptor monoclonal antibody, and was 50-100-fold greater than the alpha/beta T cell response to IL-7. This unique sensitivity of gamma/delta T cells to IL-7 was strongly enhanced by the presence of accessory cells. These cells could be replaced by rIL-1, establishing a synergy for IL-1 and IL-7 as factors that could uniquely stimulate this gamma/delta T cell population. Isolated peritoneal gamma/delta T cells from Listeria-immune mice react to heat-killed Listeria preparations in the presence of macrophages accessory cells in a non-H-2-restricted manner. Considered collectively, these results suggest a potential mechanism by which gamma/delta T cells can predominate in epithelial tissues and at sites of infection.


1988 ◽  
Vol 167 (5) ◽  
pp. 1697-1707 ◽  
Author(s):  
B Fleischer ◽  
H Schrezenmeier

Staphylococcal enterotoxins (SE) are the most potent mitogens for T lymphocytes known; concentrations of less than 10(-9) M are sufficient for T cell activation. The mechanism of T cell activation by SE is unknown. We have used cloned human cytotoxic and proliferative T lymphocytes to dissect the molecular mechanism of T cell activation by SE. With rare exceptions, all TCR alpha/beta chain-expressing T cell clones of CD4+ or CD8+ phenotype, as well as CD4-8- TCR alpha/beta chain negative chain-expressing T lymphocyte clones, respond with proliferation and/or cytotoxicity to SE. For triggering of all these clones, the presence of autologous or allogeneic MHC class II molecules on accessory or target cells is necessary. This requirement for class II antigens is not due to an immunological recognition of processed SE, since inhibition of antigen processing has no influence on the T cell response to SE. SE acts on the T cells directly since (a) they stimulate a rise in intracellular calcium concentration in T cell lines or purified T cells, and (b) accessory cells can be replaced by phorbolesters in the proliferative activation of resting T cells by SE. Furthermore, the T cell response to SE shows extensive clonal heterogeneity. These results suggest that SE are functionally bivalent mitogens binding highly selectively to HLA class II molecules and the TCR. Thus, compared with other polyclonal T cell activating agents, activation with SE most closely mimicks the physiological way of MHC-restricted antigen recognition by T lymphocytes.


1996 ◽  
Vol 183 (3) ◽  
pp. 1193-1203 ◽  
Author(s):  
T G Diacovo ◽  
S J Roth ◽  
C T Morita ◽  
J P Rosat ◽  
M B Brenner ◽  
...  

We have compared the ability of human alpha/beta and gamma/delta T lymphocytes to adhere to selectin-bearing substrates, an interaction thought to be essential for homing and localization at sites of inflammation. Both T cell populations form rolling adhesions on E- and P-selectin substrates under physiologic flow conditions. Although equivalent to alpha/beta T cells in binding to E-selectin, gamma/delta T cells demonstrated greater ability to adhere to P-selectin that was purified or expressed on the surface of activated, adherent platelets. Under static conditions, 80% of gamma/delta T cells and 53% of alpha/beta T cells formed shear-resistant adhesions to P-selectin, whereas only 30% of gamma/delta and alpha/beta T cells adhered to E-selectin. The enhance ability of gamma/delta T cells to adhere to P-selectin cannot be attributed to differences in expression of the P-selectin glycoprotein ligand (PSGL-1), as all alpha/beta T cells versus approximately 75% of gamma/delta T cells expressed PSGL-1. Both cell populations expressed a similar percentage of the carbohydrate antigens sialyl LewisX and cutaneous lymphocyte-associated antigen. Depletion of lymphocyte populations or T cell clones bearing these oligosaccharides with the monoclonal antibody CSLEX-1 and HECA-452, respectively, resulted in a substantial reduction in adhesion to E-selectin and slight reduction in adhesion to P-selectin under flow conditions. Treatment of cells with an endopeptidase that selectively degrades O-sialomucins such as PSGL-1, abolished P-selectin but not E-selectin adhesion. Removal of terminal sialic acids with neuraminidase or protease treatment of cells abrogated cell adhesion to both selectin substrates. These results provide direct evidence for the presence of distinct E- and P-selectin ligands on T lymphocytes and suggest that gamma/delta T cells may be preferentially recruited to inflammatory sites during the early stages of an immune response when P-selectin is upregulated.


Sign in / Sign up

Export Citation Format

Share Document