scholarly journals 59. DIFFERENCES IN EJECTION FRACTION BASED ON LEFT VENTRICULAR GEOMETRIC PATTERN IN HYPERTENSIVE PATIENTS

2021 ◽  
Vol 39 (Supplement 2) ◽  
pp. e15
Author(s):  
Muhammad Zakiy Azzuhdi ◽  
Harben Fernando ◽  
Giovanno R Maulana ◽  
Mefri Yanni
Author(s):  
Akshar Jaglan ◽  
Sarah Roemer ◽  
Ana Cristina Perez Moreno ◽  
Bijoy K Khandheria

Abstract Aims Myocardial work (MW) is a novel parameter that can be used in a clinical setting to assess left ventricular (LV) pressures and deformation. We sought to distinguish patterns of global MW index in hypertensive vs. non-hypertensive patients and to look at differences between categories of hypertension. Methods and results Sixty-five hypertensive patients (mean age 65 ± 13 years; 30 male) and 15 controls (mean age 38 ± 12 years; 7 male) underwent transthoracic echocardiography at rest. Hypertensive patients were subdivided into Stage 1 (n = 32) and Stage 2 (n = 33) hypertension based on 2017 American College of Cardiology guidelines. Exclusion criteria were suboptimal image quality for myocardial deformation analysis, reduced ejection fraction, valvular heart disease, intracardiac shunt, and arrhythmia. Global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency were estimated from LV pressure–strain loops utilizing proprietary software from speckle-tracking echocardiography. LV systolic and diastolic pressures were estimated using non-invasive brachial artery cuff pressure. Global longitudinal strain and LV ejection fraction were preserved between the groups with no statistically significant difference, whereas there was a statically significant difference between the control and two hypertension groups in GWI (P = 0.01), GCW (P < 0.001), and GWW (P < 0.001). Conclusion Non-invasive MW analysis allows better understanding of LV response under conditions of increased afterload. MW is an advanced assessment of LV systolic function in hypertension patients, giving a closer look at the relationship between LV pressure and contractility in settings of increased load dependency than LV ejection fraction and global longitudinal strain.


Author(s):  
Akinsanya Daniel Olusegun-Joseph ◽  
Kamilu M Karaye ◽  
Adeseye A Akintunde ◽  
Bolanle O Okunowo ◽  
Oladimeji G Opadijo ◽  
...  

Introduction The impact of preserved and reduced left ventricular ejection fraction (LVEF) has been well studied in heart failure, but not in hypertension. We aimed to highlight the prevalence, clinical characteristics, comorbidities and outcomes of hospitalized hypertensives with preserved and reduced LVEF from three teaching hospitals in Nigeria. Methods: This is a retrospective study of hypertensives admitted in 2013 in three teaching hospitals in Lagos, Kano and Ogbomosho, who had echocardiography done while on admission. Medical records and echocardiography parameters of the patients were retrieved and analyzed. Results: 54 admitted hypertensive patients who had echocardiography were recruited, of which 30 (55.6%) had reduced left ventricular ejection fraction (RLVEF), defined as ejection fraction <50%; while 24 (44.4%) had preserved left ventricular ejection fraction (PLVEF). There were 37(61.5%) females and 17 (31.5%) males. Of the male patients 64.7% had RLVEF, while 35.3% had PLVEF. 19(51.4%) of females had RLVEF, while 48.6% had PLVEF. Mean age of patients with PLVEF was 58.83±12.09 vs 54.83± 18.78 of RLVEF; p-0.19. Commonest comorbidity was Heart failure (HF) followed by stroke (found among 59.3% and 27.8% of patients respectively). RLVEF was significantly commoner than PLVEF in HF patients (68.8% vs 31.3%; p- 0.019); no significant difference in stroke patients (46.7% vs 53.3%; p-0.44). Mortality occurred in 1 (1.85%) patient who had RLVEF.         Conclusion: RLVEF was more common than PLVEF among admitted hypertensive patients; they also have more comorbidities. In-hospital mortality is, however, very low in both groups.


2013 ◽  
Vol 7 ◽  
pp. CMC.S12727 ◽  
Author(s):  
Rasaaq A. Adebayo ◽  
Olaniyi J. Bamikole ◽  
Michael O. Balogun ◽  
Anthony O. Akintomide ◽  
Victor O. Adeyeye ◽  
...  

Left ventricular (LV) hypertrophy is an important predictor of morbidity and mortality in hypertensive patients, and its geometric pattern is a useful determinant of severity and prognosis of heart disease. Studies on LV geometric pattern involving large number of Nigerian hypertensive patients are limited. We examined the LV geometric pattern in hypertensive patients seen in our echocardiographic laboratory. A two-dimensional, pulsed, continuous and color flow Doppler echocardiographic evaluation of 1020 consecutive hypertensive patients aged between 18 and 91 years was conducted over an 8-year period. LV geometric patterns were determined using the relationship between the relative wall thickness and LV mass index. Four patterns of LV geometry were found: 237 (23.2%) patients had concentric hypertrophy, 109 (10.7%) had eccentric hypertrophy, 488 (47.8%) had concentric remodeling, and 186 (18.2%) had normal geometry. Patients with concentric hypertrophy were significantly older in age, and had significantly higher systolic blood pressure (BP), diastolic BP, and pulse pressure than those with normal geometry. Systolic function index in patients with eccentric hypertrophy was significantly lower than in other geometric patterns. Doppler echocardiographic parameters showed some diastolic dysfunction in hypertensive patients with abnormal LV geometry. Concentric remodeling was the most common LV geometric pattern observed in our hypertensive patients, followed by concentric hypertrophy and eccentric hypertrophy. Patients with concentric hypertrophy were older than those with other geometric patterns. LV systolic function was significantly lower in patients with eccentric hypertrophy and some degree of diastolic dysfunction were present in patients with abnormal LV geometry.


ESC CardioMed ◽  
2018 ◽  
pp. 1808-1812
Author(s):  
Francesco Paneni ◽  
Massimo Volpe

Hypertensive heart disease is a major cause of heart failure (HF) and mortality. Hypertension precedes HF occurrence in 75% of cases, and carries a sixfold increase in HF risk as compared to non-hypertensive individuals. Most importantly, a minority of patients survive 5 years after the onset of hypertensive HF. In hypertensive patients, the heart may present different patterns of adaptive remodelling: concentric remodelling, concentric hypertrophy, and eccentric hypertrophy. Although most hypertensive patients are at high risk of developing concentric hypertrophy, a growing proportion of subjects display a concentric-to-eccentric progression eventually leading to left ventricular dilation and systolic dysfunction. Several factors including myocardial ischaemia, ethnicity, genetic background, history of diabetes, and blood pressure pattern may significantly influence the pathway from hypertension to left ventricular dilation. Patients with a concentric hypertrophy usually develop HF with preserved ejection fraction (HFpEF), whereas those with an eccentric (dilated) phenotype develop HF with reduced ejection fraction (HFrEF). Lowering blood pressure has a striking effect in reducing the risk of HF. Although available antihypertensive drugs are all successful in lowering blood pressure, angiotensin-converting enzyme inhibitors, angiotensin receptor blocker (ARBs), and diuretics are more effective than other drug classes in preventing HF. The combination of the neprilysin inhibitor sacubitril with the ARB valsartan (LCZ696) has recently been shown to be highly effective in reducing HF-related outcomes in hypertensive subjects. An individualized treatment scheme taking into account blood pressure levels, type of HF (HFpEF or HFrEF), and relevant co-morbidities (i.e. renal disease, diabetes) is currently the best approach to improve morbidity and mortality in hypertensive patients with HF.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M A Losi ◽  
C Mancusi ◽  
E Gerdts ◽  
K Wachtell ◽  
S E Kjeldsen ◽  
...  

Abstract Background Myocardial energetic efficiency (MEE) per unit of left ventricular (LV) mass significantly predicts composite of cardiovascular (CV) events in treated hypertensive patients and specifically heart failure in an event-free population-based cohort with normal ejection fraction, independently of LV hypertrophy (LVH). Purpose To investigate whether MEEi changes over time in treated hypertensive patients, and whether different treatments have different effects. Methods From the Losartan Intervention For Endpoint study (LIFE Echo Sub-study) we selected 744 hypertensive patients (age 66±7 years; 45% women) with LVH at ECG, without atrial fibrillation, previous or incident myocardial infarction and with normal echocardiographic ejection fraction (>50%). MEE was estimated as the ratio of stroke work to the “double” product of heart rate times systolic blood pressure (BP), simplified as the ratio of stroke volume to heart rate, as previously reported. MEE was normalized for LVM (MEEi) and analyzed in quartiles at baseline and at the end treatment, according to an “intention-to-treat” protocol. Results Age and proportion of women were not significantly different from the highest to the lowest quartiles (from 65±7 to 66±7 years, p for trend=0.352; from 45% to 42%, p=0.946, respectively), whereas diastolic blood pressure (from 97±8 to 100±9 mmHg, p=0.006), prevalence of obesity (from 14 to 31%, p=0.001) and diabetes (from 4 to 14%, 0.004) progressively increased. Prevalence of concentric LV geometry and echocardiographic LVH also progressively increased from the highest to the lowest quartile (from 14 to 70%, and 61 to 90%, both p<0.0001). MEEi increased over time (p<0.007), independently of initial diastolic BP, diabetes and obesity, significantly more in patients treated with atenolol than with losartan (p<0.0001) (Figure), due to both increased stroke volume and decreased heart rate (both p<0.0001). Figure 1 Conclusions In a randomized clinical study, MEEi improves with anti-hypertensive therapy. Improvement is more evident in patients with atenolol than with losartan-based treatment, possibly providing pathophysiologic explanation of the comparable performance in prevention of ischemic heart disease previously reported in the LIFE study.


Author(s):  
Francesco Paneni ◽  
Massimo Volpe

Hypertensive heart disease is a major cause of heart failure (HF) and mortality. Hypertension precedes HF occurrence in 75% of cases, and carries a sixfold increase in HF risk as compared to non-hypertensive individuals. Most importantly, a minority of patients survive 5 years after the onset of hypertensive HF. In hypertensive patients, the heart may present different patterns of adaptive remodelling: concentric remodelling, concentric hypertrophy, and eccentric hypertrophy. Although most hypertensive patients are at high risk of developing concentric hypertrophy, a growing proportion of subjects display a concentric-to-eccentric progression eventually leading to left ventricular dilation and systolic dysfunction. Several factors including myocardial ischaemia, ethnicity, genetic background, history of diabetes, and blood pressure pattern may significantly influence the pathway from hypertension to left ventricular dilation. Patients with a concentric hypertrophy usually develop HF with preserved ejection fraction (HFpEF), whereas those with an eccentric (dilated) phenotype develop HF with reduced ejection fraction (HFrEF). Lowering blood pressure has a striking effect in reducing the risk of HF. Although available antihypertensive drugs are all successful in lowering blood pressure, angiotensin-converting enzyme inhibitors, angiotensin receptor blocker (ARBs), and diuretics are more effective than other drug classes in preventing HF. The combination of the neprilysin inhibitor sacubitril with the ARB valsartan (LCZ696) has recently been shown to be highly effective in reducing HF-related outcomes in hypertensive subjects. An individualized treatment scheme taking into account blood pressure levels, type of HF (HFpEF or HFrEF), and relevant co-morbidities (i.e. renal disease, diabetes) is currently the best approach to improve morbidity and mortality in hypertensive patients with HF.


Medicine ◽  
2019 ◽  
Vol 98 (4) ◽  
pp. e14257
Author(s):  
Ting-Yan Xu ◽  
Yan Yang ◽  
Jing-Jing Li ◽  
Yan Li ◽  
Ji-Guang Wang

Sign in / Sign up

Export Citation Format

Share Document