scholarly journals A Novel In Vitro Model of Trophoblast-Mediated Decidual Blood Vessel Remodeling

2003 ◽  
Vol 83 (12) ◽  
pp. 1821-1828 ◽  
Author(s):  
Caroline Dunk ◽  
Ljiljana Petkovic ◽  
Dora Baczyk ◽  
Janet Rossant ◽  
Elke Winterhager ◽  
...  
Author(s):  
Daniel Jodko ◽  
Tomasz Palczynski ◽  
Piotr Reorowicz ◽  
Kacper Miazga ◽  
Damian Obidowski ◽  
...  

A pressure drop and its oscillations occurring in the arteriovenous fistula due to sudden changes in the velocity vector direction or the transitional or turbulent flow, related to its complicated geometry, can exert a significant impact on the blood vessel wall behaviour. On the other hand, the pressure drop cannot be precisely measured in vivo with non-invasive measurement methods. The aim of this study is to assess the pressure drop with numerical and experimental methods in the patient-specific fistula model taking into account a pulsating nature of the flow and the elasticity of blood vessel walls. An additional target is to find a correlation between these two methods. FSI and in vitro simulations of the blood flow were performed for a patient-specific model of the fistula. Basic geometrical data of the correctly functioning mature fistula were obtained with angio-computed tomography. Those data were applied to develop a spatial CAD model of the fistula, which allowed for creating a virtual model for computer simulations and an analogous in vitro model made with rapid prototyping techniques. The material used to build the in vitro model is characterised by mechanical properties similar to the arterial tissue. A non-stationary computer simulation was carried out with an ANSYS software package, keeping as many flow similarities to the experiments carried out on the test stand as possible, and where the blood mimicking fluid was a water solution of glycerine. During the experiments, the static pressure was measured downstream and upstream of the anastomosis with precise pressure transducers. The pressure drop was determined with the numerical and experimental methods, which take into account the elasticity of blood vessels. This is a novel approach, since most of similar studies were conducted on the assumption of rigid blood vessel walls. The obtained results show that the pressure drop within the fistula is not so high as reported in the literature, which is correlated with the precision of measurement methods and the fact that a large portion of the fluid energy is accumulated by the elastic walls.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

2020 ◽  
Author(s):  
H Gaitantzi ◽  
C Cai ◽  
S Asawa ◽  
K Böttcher ◽  
M Ebert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document