Comprehensive Genomic Profiling of Epithelial Ovarian Cancer by Next Generation Sequencing-Based Diagnostic Assay Reveals New Routes to Targeted Therapies

2013 ◽  
Vol 68 (10) ◽  
pp. 688-689 ◽  
Author(s):  
J. S. Ross ◽  
S. M. Ali ◽  
K. Wang ◽  
G. Palmer ◽  
R. Yelensky ◽  
...  
Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1641 ◽  
Author(s):  
Caterina Fumagalli ◽  
Federica Tomao ◽  
Ilaria Betella ◽  
Alessandra Rappa ◽  
Mariarosaria Calvello ◽  
...  

The PARP inhibitor olaparib has been approved in the maintenance setting of platinum-sensitive epithelial ovarian cancer patients with germline or somatic BRCA1/2 mutation. Therefore, the availability of a tumor BRCA test has become a clinical need. We report the results of the clinical implementation of a tumor BRCA test within the frame of an institutional workflow for the management of patients with nonmucinous and nonborderline epithelial ovarian cancer. In total, 223 patients with epithelial ovarian cancer were prospectively analyzed. BRCA1/2 status was evaluated on formalin-fixed, paraffin-embedded tumor specimens using next-generation sequencing technology. The tumor BRCA test had a success rate of 99.1% (221 of 223 successfully analyzed cases) and a median turnaround time of 17 calendar days. Among the 221 cases, BRCA1 or BRCA2 pathogenic/likely pathogenic mutations were found in 62 (28.1%) cases and variants of uncertain significance in 25 (11.3%) cases. The concordance rate between tumor BRCA test results and germline BRCA1/2 status was 87%, with five cases harboring pathogenic/likely pathogenic somatic-only mutations. The next-generation, sequencing-based tumor BRCA test showed a high success rate and a turnaround time compatible with clinical purposes. The tumor BRCA test could be implemented in a molecular diagnostic setting and it may guide the clinical management of patients with epithelial ovarian cancer.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 584-584
Author(s):  
Kristin Lynn Koenig ◽  
Jarred Burkart ◽  
Sameh Mikhail ◽  
Christina Sing-Ying Wu ◽  
Anne M. Noonan ◽  
...  

584 Background: Tumor genomic profiling has become critical in the identification of targeted therapeutic options for patients (pts) with advanced malignancies. Mutational frequencies and their therapeutic importance vary among tumor types. This analysis was undertaken to characterize the landscape of genomic alterations in gastrointestinal (GI) malignancies found in a large academic institutional practice, and to determine the frequency of alteration-specific targeted therapy selection based on genomic profiling. Methods: Adult pts with GI malignancies presenting to the Ohio State University Comprehensive Cancer Center oncology clinics were offered next generation sequencing through FoundationOne testing as part of routine clinical care. Institutional review board approval was obtained to retrospectively analyze results from FoundationOne testing performed between 2012 and 2015. Results: 265 pts with GI malignancies underwent successful genomic profiling. 1205 genomic alterations were found, with an average of 4.5 per tumor (range 0-20); 365 (30%) of these were potentially actionable and most often found in colorectal or gastroesophageal tumors. 14 pts (5.3%) had actionable alterations in MET, CDKN2A/B, FGFR2, KRAS, BRAF, or NF2 that led to enrollment in genotype-directed clinical trials or off label use of targeted therapies beyond standard of care. Pt performance status at the time of genomic alteration identification was a significant factor in precluding genotype-directed therapy. One variant of unknown significance involving FGFR2 identified at initial testing subsequently became actionable and led to pt enrollment on a clinical trial. One pt with rectal cancer was found to have a KRAS wild-type and BRAF mutant primary but KRAS mutant and BRAF wild-type liver metastasis. Conclusions: Genomic profiling of GI malignancies through next generation sequencing is feasible and can lead to genotype-directed therapy selection; however, it should be considered early in the pt’s course to optimize use of targeted therapies through clinical trials. Consideration should be given to serial tumor testing to identify emerging genomic alterations for optimal therapy selection.


PLoS ONE ◽  
2009 ◽  
Vol 4 (4) ◽  
pp. e5311 ◽  
Author(s):  
Stacia K. Wyman ◽  
Rachael K. Parkin ◽  
Patrick S. Mitchell ◽  
Brian R. Fritz ◽  
Kathy O'Briant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document