The Tubal Fimbria Is a Preferred Site for Early Adenocarcinoma in Women With Familial Ovarian Cancer Syndrome

2006 ◽  
Vol 30 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Fabiola Medeiros ◽  
Michael G Muto ◽  
Yonghee Lee ◽  
Julia A Elvin ◽  
Michael J Callahan ◽  
...  
2021 ◽  
Vol 22 (7) ◽  
pp. 3495
Author(s):  
Katarzyna M. Terlikowska ◽  
Bożena Dobrzycka ◽  
Sławomir J. Terlikowski

Our increased understanding of tumour biology gained over the last few years has led to the development of targeted molecular therapies, e.g., vascular endothelial growth factor A (VEGF-A) antagonists, poly[ADP-ribose] polymerase 1 (PARP1) inhibitors in hereditary breast and ovarian cancer syndrome (BRCA1 and BRCA2 mutants), increasing survival and improving the quality of life. However, the majority of ovarian cancer (OC) patients still do not have access to targeted molecular therapies that would be capable of controlling their disease, especially resistant or relapsed. Chimeric antigen receptors (CARs) are recombinant receptor constructs located on T lymphocytes or other immune cells that change its specificity and functions. Therefore, in a search for a successful solid tumour therapy using CARs the specific cell surface antigens identification is crucial. Numerous in vitro and in vivo studies, as well as studies on humans, prove that targeting overexpressed molecules, such as mucin 16 (MUC16), annexin 2 (ANXA2), receptor tyrosine-protein kinase erbB-2 (HER2/neu) causes high tumour cells toxicity and decreased tumour burden. CARs are well tolerated, side effects are minimal and they inhibit disease progression. However, as OC is heterogenic in its nature with high mutation diversity and overexpression of different receptors, there is a need to consider an individual approach to treat this type of cancer. In this publication, we would like to present the history and status of therapies involving the CAR T cells in treatment of OC tumours, suggest potential T cell-intrinsic determinants of response and resistance as well as present extrinsic factors impacting the success of this approach.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 969
Author(s):  
Maxim Pilyugin ◽  
Magda Ratasjka ◽  
Maciej Stukan ◽  
Nicole Concin ◽  
Robert Zeillinger ◽  
...  

Background: Ovarian cancer (OC) is the most lethal gynaecological cancer. It is often diagnosed at an advanced stage with poor chances for successful treatment. An accurate blood test for the early detection of OC could reduce the mortality of this disease. Methods: Autoantibody reactivity to 20 epitopes of BARD1 and concentration of cancer antigen 125 (CA125) were assessed in 480 serum samples of OC patients and healthy controls. Autoantibody reactivity and CA125 were also tested for 261 plasma samples of OC with or without mutations in BRCA1/2, BARD1, or other predisposing genes, and healthy controls. Lasso statistic regression was applied to measurements to develop an algorithm for discrimination between OC and controls. Findings and interpretation: Measurement of autoantibody binding to a number of BARD1 epitopes combined with CA125 could distinguish OC from healthy controls with high accuracy. This BARD1-CA125 test was more accurate than measurements of BARD1 autoantibody or CA125 alone for all OC stages and menopausal status. A BARD1-CA125-based test is expected to work equally well for average-risk women and high-risk women with hereditary breast and ovarian cancer syndrome (HBOC). Although these results are promising, further data on well-characterised clinical samples shall be used to confirm the potential of the BARD1-CA125 test for ovarian cancer screening.


2012 ◽  
Vol 7 ◽  
pp. BMI.S10815 ◽  
Author(s):  
Ludmila Kaplun ◽  
Aviva Levine Fridman ◽  
Wei Chen ◽  
Nancy K. Levin ◽  
Sidra Ahsan ◽  
...  

A substantial fraction of familial ovarian cancer cases cannot be attributed to specific genetic factors. The discovery of additional susceptibility genes will permit a more accurate assessment of hereditary cancer risk and allow for monitoring of predisposed women in order to intervene at the earliest possible stage. We focused on a population with elevated familial breast and ovarian cancer risk. In this study, we identified a SNP rs926103 whose minor allele is associated with predisposition to ovarian but not breast cancer in a Caucasian high-risk population without BRCA1/ BRCA2 mutations. We have found that the allelic variation of rs926103, which alters amino acid 52 of the encoded protein SH2D2A/TSAd, results in differences in the activity of this protein involved in multiple signal transduction pathways, including regulation of immune response, tumor vascularization, cell growth, and differentiation. Our observation provides a novel candidate genetic biomarker of elevated ovarian cancer risk in members of high-risk families without BRCA1/2 mutations, as well as a potential therapeutic target, TSAd.


Sign in / Sign up

Export Citation Format

Share Document