Blood Glucose Measurement Traceability to the Primary Reference Measurement Procedure (ID-MS) for Noninvasive Glucose Monitoring

Author(s):  
Katsuhiko Kuwa ◽  
Ok Kyung Cho ◽  
Hiroshi Mitsumaki ◽  
Kazuo Yasuda
2017 ◽  
Vol 11 (4) ◽  
pp. 766-772 ◽  
Author(s):  
Thorsten Siegmund ◽  
Lutz Heinemann ◽  
Ralf Kolassa ◽  
Andreas Thomas

Background: For decades, the major source of information used to make therapeutic decisions by patients with diabetes has been glucose measurements using capillary blood samples. Knowledge gained from clinical studies, for example, on the impact of metabolic control on diabetes-related complications, is based on such measurements. Different to traditional blood glucose measurement systems, systems for continuous glucose monitoring (CGM) measure glucose in interstitial fluid (ISF). The assumption is that glucose levels in blood and ISF are practically the same and that the information provided can be used interchangeably. Thus, therapeutic decisions, that is, the selection of insulin doses, are based on CGM system results interpreted as though they were blood glucose values. Methods: We performed a more detailed analysis and interpretation of glucose profiles obtained with CGM in situations with high glucose dynamics to evaluate this potentially misleading assumption. Results: Considering physical activity, hypoglycemic episodes, and meal-related differences between glucose levels in blood and ISF uncover clinically relevant differences that can make it risky from a therapeutic point of view to use blood glucose for therapeutic decisions. Conclusions: Further systematic and structured evaluation as to whether the use of ISF glucose is more safe and efficient when it comes to acute therapeutic decisions is necessary. These data might also have a higher prognostic relevance when it comes to long-term metabolic consequences of diabetes. In the long run, it may be reasonable to abandon blood glucose measurements as the basis for diabetes management and switch to using ISF glucose as the appropriate therapeutic target.


2018 ◽  
Vol 64 (9) ◽  
pp. 1296-1307 ◽  
Author(s):  
Alexandra S Whale ◽  
Gerwyn M Jones ◽  
Jernej Pavšič ◽  
Tanja Dreo ◽  
Nicholas Redshaw ◽  
...  

Abstract BACKGROUND Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use. METHODS We assessed the accuracy of digital PCR (dPCR) for copy number quantification of a frequently occurring single-nucleotide variant in colorectal cancer (KRAS c.35G>A, p.Gly12Asp, from hereon termed G12D) by evaluating potential sources of uncertainty that influence dPCR measurement. RESULTS Concentration values for samples of KRAS G12D and wild-type plasmid templates varied by <1.2-fold when measured using 5 different assays with varying detection chemistry (hydrolysis, scorpion probes, and intercalating dyes) and <1.3-fold with 4 commercial dPCR platforms. Measurement trueness of a selected dPCR assay and platform was validated by comparison with an orthogonal method (inductively coupled plasma mass spectrometry). The candidate dPCR reference measurement procedure showed linear quantification over a wide range of copies per reaction and high repeatability and interlaboratory reproducibility (CV, 2%–8% and 5%–10%, respectively). CONCLUSIONS This work validates dPCR as an SI-traceable reference measurement procedure based on enumeration and demonstrates how it can be applied for assignment of copy number concentration and fractional abundance values to DNA reference materials in an aqueous solution. High-accuracy measurements using dPCR will support the implementation and traceable standardization of molecular diagnostic procedures needed for advancements in precision medicine.


2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Yuki Sugiyama ◽  
Chiaki Kiuchi ◽  
Maiko Suzuki ◽  
Yuki Maruyama ◽  
Ryo Wakabayashi ◽  
...  

Insulinoma is a rare neuroendocrine tumor that causes hypoglycemia due to unregulated insulin secretion. Blood glucose management during insulinoma resection is therefore challenging. We present a case in which real-time subcutaneous continuous glucose monitoring (SCGM) in combination with intermittent blood glucose measurement was used for glycemic control during surgery for insulinoma resection. The SCGM system showed the trends and peak of interstitial glucose in response to glucose loading and the change of interstitial glucose before and after insulinoma resection. These data were helpful for adjusting the glucose infusion; therefore, we think that an SCGM system as a supportive device for glucose monitoring may be useful for glucose management during surgery.


2020 ◽  
pp. 193229682094887
Author(s):  
Guido Freckmann ◽  
Annette Baumstark ◽  
Nina Jendrike ◽  
Jochen Mende ◽  
Sebastian Schauer ◽  
...  

Background: Measurement accuracy has been assessed for many different blood glucose monitoring systems (BGMS) over the years by different study groups. However, the choice of the comparison measurement procedure may impact the apparent level of accuracy found in such studies. Materials and Methods: Measurement accuracy of 18 different BGMS was assessed in a setting based on ISO 15197 using two different comparison methods in parallel: a glucose oxidase (GOD)-based and a hexokinase (HK)-based method. Accuracy limits of ISO 15197 were applied, and additional analyses were performed, including bias, linear regression, and mean absolute relative difference (MARD) to assess the impact of possible differences between comparison methods on the apparent level of accuracy. Results: While ≈80% of BGMS met the accuracy criteria of ISO 15197 when compared with the respective manufacturers’ reference measurement procedure, only two-thirds did so against both comparison methods. The mean relative bias ranged from −6.6% to +5.7% for the analysis against the GOD-based method and from −11.1% to +1.3% for the analysis against the HK-based method, whereas MARD results ranged from 3.7% to 9.8% and from 2.3% to 10.5%, respectively. Results of regression analysis showed slopes between 0.85 and 1.08 (GOD-based method) and between 0.81 and 1.01 (HK-based method). Conclusions: The results of this study indicate that there are systematic differences between the reference measurement procedures used for BGMS calibration as well as for system accuracy assessment. Because of the potential impact on therapy of patients with diabetes resulting from these differences, further steps toward harmonization of the measurement procedures’ results are important.


2019 ◽  
Vol 107 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Iga Zuba ◽  
Halina Polkowska-Motrenko

Abstract Primary reference measurement procedure for Cr determination in biological samples by radiochemical neutron activation analysis (RNAA) has been elaborated. The procedure is based on quantitative and selective separation of chromium from neutron irradiated sample by column chromatography using MnO2-Resin and determination of 51Cr by γ-ray spectrometry. Quality components have been incorporated into the RNAA method which makes it possible to meet the requirements of the definition of ratio primary reference measurement procedure. The usefulness of the elaborated procedure to assign the certified values for Cr in new certified reference material (CRMs) based on animal tissues is demonstrated. The tentative certified values for Cr have been proposed for: MODAS M-4 Cormorant Tissue and M-5 Cod Tissue CRMs.


Sign in / Sign up

Export Citation Format

Share Document