scholarly journals RECOMBINANT NIDOGEN-1 SIGNIFICANTLY PROTECTS HUMAN ISLETS FROM HYPOXIA-INDUCED DAMAGE

2020 ◽  
Vol 104 (S3) ◽  
pp. S563-S563
Author(s):  
Daniel Brandhorst ◽  
Heide Brandhorst ◽  
Samuel Acreman ◽  
Shannon Layland ◽  
Katja Schenke-Layland ◽  
...  
Keyword(s):  
Author(s):  
Daniel Brandhorst ◽  
Et al.

Daniel Brandhorst,1,2 Heide Brandhorst,1,2 Samuel Acreman,1,2 Yukari Kimura,1,2 Shannon Layland,3 Katja Schenke-Layland,3 Paul R.V. Johnson1,2 1 Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom 2 Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, United Kingdom 3 Natural and Medical Sciences Institute, Eberhard Karls University, Tübingen, Germany Aim Islet isolation essentially requires dissociation of the islet basement membrane by collagenolytic enzymes. Basement membrane loss is associated with reduced islet function and viability. Previous studies demonstrated that individual extracellular matrix proteins (ECMPs) can increase islet survival pre- and post-transplant. In the present study, we tested our hypothesis, that the combination of different ECMPs, particularly those forming suprastructures, are more efficient than individual ECMPs to protect human islets from hypoxia-induced damage. In contrast to previous studies, we dissolved ECMPs in the media rather than to coat culture surfaces. Methods Islets, isolated from pancreases of 11 human DBD donors (50±2 years, 29.3±1.2 BMI, 5.7±0.3 hours CIT), were cultured for 3–4 days in 2% oxygen and suspended in CMRL 1066 (2% FCS) supplemented with either 40 µg/mL of dissolved collagen-IV, 10 µg/mL laminin-521 or 12.5 µg/mL nidogen-1 used individually or as combination. Sham-treated islets (STIs) cultured without ECMPs served as controls. Post-culture characterisation included IEQ yield or islet number (IN), viability (FDA-PI), early plus late apoptosis (annexin V-PI), glucose stimulation index (SI: 2 vs 20 mM) and reactive oxygen species production. Parameters were normalised to IEQ, related to pre-culture data if appropriate and presented as mean ± SEM. Statistical analysis was performed by Friedman test followed by Dunn’s multiple comparison. Results Compared with STI (41±7%), post-culture recovery was higher when hypoxic islets were treated with collagen-IV (64±7%, p<0.001), laminin-521 (57±6%, p<0.01) or nidogen-1 (65±6%, p<0.001) used individually or combined (61±7% p<0.001). This correlated with islet fragmentation (IN/IEQ ratio) that was lower when collagen-IV (116±13%, p<0.001), laminin-521 (114±12%, p<0.01), nidogen-1 (121±12%, p<0.01) or combined ECMPs (119±13%, p<0.001) were compared with STIs (155±16%). Reactive oxygen species production in STIs was substantially reduced by 71±6% (NS), 73±6% (p<0.05), 90±2% (p<0.001), and 87±4% (p<0.001) in presence of collagen-IV, laminin-521, nidogen-1 or combined ECMPs, respectively. This resulted in improved viability (83±7% [p<0.01], 79±9% [p<0.01], 84±7% [p<0.001], 83±8% [p<0.001]) compared with STIs (63±7%). While individual ECMPs stabilised or reduced pre-culture apoptosis (94±17% [p<0.05], 117±16% [p<0.05], 68±13% [p<0.001]), combined ECMPs (171±18%, NS) were equal to STIs (196±28%). STIs did not adequately secrete insulin after glucose challenge (SI 0.97±0.13) in contrast to the physiological insulin response after treatment with collagen-IV (1.76±1.18 [p<0.01]), laminin-521 (1.53±0.25 [NS]), nidogen-1 (2.27±0.67 [p<0.01]) or combined ECMPs (1.95±0.25 [p<0.05]). Conclusion Among the three individual ECMPs tested, nidogen-1 appears to be most effective to protect human islets from hypoxia-induced damage. As its protective efficiency partially exceeds that of combined ECMPs, we have to reject our hypothesis. Further studies are required to clarify whether collagen-IV, laminin-521 and nidogen-1 spontaneously assemble to suprastructures in vitro.  


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2119-P
Author(s):  
ADAM C. SWENSEN ◽  
YINYIN YE ◽  
ERCUMENT DIRICE ◽  
ROHIT KULKARNI ◽  
WEIJUN QIAN

Diabetes ◽  
1989 ◽  
Vol 38 (3) ◽  
pp. 386-396 ◽  
Author(s):  
N. M. Kneteman ◽  
D. Alderson ◽  
D. W. Scharp ◽  
P. E. Lacy

2007 ◽  
Vol 30 (4) ◽  
pp. 92 ◽  
Author(s):  
K Potter ◽  
K Park

Background: Pancreatic islet transplantation offers improved glycemic control in type 1 diabetic patients above standard insulin therapy, ideally minimizing macro- and microvascular complications of diabetes mellitus. However success is limited thus far, with fewer than 10% of patients retaining insulin independence at two years post-transplantation. In addition to immune rejection, many non-immune factors may promote long-term graft secretory dysfunction and loss of viable graft mass. One such important non-immune factor may be the formation of islet amyloid, a pathologic lesion of the islet in type 2 diabetes that contributes to the progressive loss of b cells in that disease and that has been shown to form rapidly in human islets transplanted into NOD.scid mice. Amyloid deposits are composed primarily of the b cell secretory product islet amyloid polypeptide (IAPP), are cytotoxic, and develop in environments in which b cells are stressed. Heparin sulfate is used as an anti-coagulant in clinical islet transplantation and to prevent the instant blood-mediated inflammatory reaction (IBMIR), which occurs upon contact between islets and blood and may destroy a substantial proportion of the grafted islet mass. However, heparin is also known to stimulate amyloid fibril formation. Methods: To determine whether heparin may enhance amyloid formation in human islets and contribute to graft failure, we cultured isolated human islets in the presence or absence of heparin sulfate (42 and 420 units/ml) for 2 weeks in 11.1 mM glucose. Results: Histological assessment of sections of cultured islets for the presence of amyloid (by thioflavin S staining) revealed a marked, concentration-dependent increase in amyloid deposition following culture in the presence of heparin. Quantitative analysis of these sections showed that the proportion of islet area comprised of amyloid was increased approximately 2-fold (0.15%±0.12% vs 0.46%±0.15% of islet area) following culture in 42 units/ml heparin, and the proportion of islets in which amyloid was detectable (amyloid prevalence) was also increased (35%±24% vs 68%±10% of islets). At 420 units/ml heparin, the amyloid area was even greater (0.23%±0.15% vs 0.97%±0.42% of islet area) as was the amyloid prevalence (53%±29% vs 81%±14% of islets). To affirm that heparin can stimulate IAPP fibrillogenesis and enhance IAPP toxicity, we incubated synthetic human IAPP in the presence of heparin and measured amyloid formation in real time by thioflavin T fluorescence, and cell toxicity by Alamar blue viability assay in transformed rat (INS-1) ß-cell cultures. Heparin stimulated IAPP fibril formation and increased death of INS-1 cells exposed to IAPP (78.2%±10.9% vs 51.8%±12.2% of control viability), suggesting that heparin stimulates IAPP aggregation and toxicity. Remarkably, preliminary assessment of human islets cultured in heparin did not show increased islet cell death by TUNEL staining or loss of insulin immunostaining. Conclusion: In summary, heparin increases amyloid formation in cultured human islets. Although our preliminary data does not suggest that heparin-induced amyloid formation contributes to islet cell death, we speculate that heparin-induced amyloid formation may contribute to graft dysfunction and that caution should be used in the clinical application of this drug in islet transplantation.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 401
Author(s):  
Katherine M. Gerber ◽  
Nicholas B. Whitticar ◽  
Daniel R. Rochester ◽  
Kathryn L. Corbin ◽  
William J. Koch ◽  
...  

Insulin secretion is widely thought to be maximally stimulated in glucose concentrations of 16.7-to-30 mM (300-to-540 mg/dL). However, insulin secretion is seldom tested in hyperglycemia exceeding these levels despite the Guinness World Record being 147.6 mM (2656 mg/dL). We investigated how islets respond to 1-h exposure to glucose approaching this record. Insulin secretion from human islets at 12 mM glucose intervals dose-dependently increased until at least 72 mM glucose. Murine islets in 84 mM glucose secreted nearly double the insulin as in 24 mM (p < 0.001). Intracellular calcium was maximally stimulated in 24 mM glucose despite a further doubling of insulin secretion in higher glucose, implying that insulin secretion above 24 mM occurs through amplifying pathway(s). Increased osmolarity of 425-mOsm had no effect on insulin secretion (1-h exposure) or viability (48-h exposure) in murine islets. Murine islets in 24 mM glucose treated with a glucokinase activator secreted as much insulin as islets in 84 mM glucose, indicating that glycolytic capacity exists above 24 mM. Using an incretin mimetic and an adenylyl cyclase activator in 24 mM glucose enhanced insulin secretion above that observed in 84 mM glucose while adenylyl cyclase inhibitor reduced stimulatory effects. These results highlight the underestimated ability of islets to secrete insulin proportionally to extreme hyperglycemia through adenylyl cyclase activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


Author(s):  
Gregor Bötticher ◽  
Dorothèe Sturm ◽  
Florian Ehehalt ◽  
Klaus P. Knoch ◽  
Stephan Kersting ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document