Faculty Opinions recommendation of Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes.

Author(s):  
Rama Natarajan
Diabetes ◽  
2019 ◽  
Vol 68 (10) ◽  
pp. 1965-1974 ◽  
Author(s):  
Elin Hall ◽  
Josefine Jönsson ◽  
Jones K. Ofori ◽  
Petr Volkov ◽  
Alexander Perfilyev ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Karl Bacos ◽  
Linn Gillberg ◽  
Petr Volkov ◽  
Anders H Olsson ◽  
Torben Hansen ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 401
Author(s):  
Katherine M. Gerber ◽  
Nicholas B. Whitticar ◽  
Daniel R. Rochester ◽  
Kathryn L. Corbin ◽  
William J. Koch ◽  
...  

Insulin secretion is widely thought to be maximally stimulated in glucose concentrations of 16.7-to-30 mM (300-to-540 mg/dL). However, insulin secretion is seldom tested in hyperglycemia exceeding these levels despite the Guinness World Record being 147.6 mM (2656 mg/dL). We investigated how islets respond to 1-h exposure to glucose approaching this record. Insulin secretion from human islets at 12 mM glucose intervals dose-dependently increased until at least 72 mM glucose. Murine islets in 84 mM glucose secreted nearly double the insulin as in 24 mM (p < 0.001). Intracellular calcium was maximally stimulated in 24 mM glucose despite a further doubling of insulin secretion in higher glucose, implying that insulin secretion above 24 mM occurs through amplifying pathway(s). Increased osmolarity of 425-mOsm had no effect on insulin secretion (1-h exposure) or viability (48-h exposure) in murine islets. Murine islets in 24 mM glucose treated with a glucokinase activator secreted as much insulin as islets in 84 mM glucose, indicating that glycolytic capacity exists above 24 mM. Using an incretin mimetic and an adenylyl cyclase activator in 24 mM glucose enhanced insulin secretion above that observed in 84 mM glucose while adenylyl cyclase inhibitor reduced stimulatory effects. These results highlight the underestimated ability of islets to secrete insulin proportionally to extreme hyperglycemia through adenylyl cyclase activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hong Lin ◽  
Yuan Yan ◽  
Yifan Luo ◽  
Wing Yan So ◽  
Xiayun Wei ◽  
...  

AbstractCOP1 and COP9 signalosome (CSN) are the substrate receptor and deneddylase of CRL4 E3 ligase, respectively. How they functionally interact remains unclear. Here, we uncover COP1–CSN antagonism during glucose-induced insulin secretion. Heterozygous Csn2WT/K70E mice with partially disrupted binding of IP6, a CSN cofactor, display congenital hyperinsulinism and insulin resistance. This is due to increased Cul4 neddylation, CRL4COP1 E3 assembly, and ubiquitylation of ETV5, an obesity-associated transcriptional suppressor of insulin secretion. Hyperglycemia reciprocally regulates CRL4-CSN versus CRL4COP1 assembly to promote ETV5 degradation. Excessive ETV5 degradation is a hallmark of Csn2WT/K70E, high-fat diet-treated, and ob/ob mice. The CRL neddylation inhibitor Pevonedistat/MLN4924 stabilizes ETV5 and remediates the hyperinsulinemia and obesity/diabetes phenotypes of these mice. These observations were extended to human islets and EndoC-βH1 cells. Thus, a CRL4COP1-ETV5 proteolytic checkpoint licensing GSIS is safeguarded by IP6-assisted CSN-COP1 competition. Deregulation of the IP6-CSN-CRL4COP1-ETV5 axis underlies hyperinsulinemia and can be intervened to reduce obesity and diabetic risk.


2015 ◽  
Vol 309 (7) ◽  
pp. E640-E650 ◽  
Author(s):  
Jean-Claude Henquin ◽  
Denis Dufrane ◽  
Julie Kerr-Conte ◽  
Myriam Nenquin

The biphasic pattern of glucose-induced insulin secretion is altered in type 2 diabetes. Impairment of the first phase is an early sign of β-cell dysfunction, but the underlying mechanisms are still unknown. Their identification through in vitro comparisons of islets from diabetic and control subjects requires characterization and quantification of the dynamics of insulin secretion by normal islets. When perifused normal human islets were stimulated with 15 mmol/l glucose (G15), the proinsulin/insulin ratio in secretory products rapidly and reversibly decreased (∼50%) and did not reaugment with time. Switching from prestimulatory G3 to G6–G30 induced biphasic insulin secretion with flat but sustained (2 h) second phases. Stimulation index reached 6.7- and 3.6-fold for the first and second phases induced by G10. Concentration dependency was similar for both phases, with half-maximal and maximal responses at G6.5 and G15, respectively. First-phase response to G15–G30 was diminished by short (30–60 min) prestimulation in G6 (vs. G3) and abolished by prestimulation in G8, whereas the second phase was unaffected. After 1–2 days of culture in G8 (instead of G5), islets were virtually unresponsive to G15. In both settings, a brief return to G3–G5 or transient omission of CaCl2 restored biphasic insulin secretion. Strikingly, tolbutamide and arginine evoked immediate insulin secretion in islets refractory to glucose. In conclusion, we quantitatively characterized the dynamics of glucose-induced insulin secretion in normal human islets and showed that slight elevation of prestimulatory glucose reversibly impairs the first phase, which supports the view that the similar impairment in type 2 diabetic patients might partially be a secondary phenomenon.


2016 ◽  
Vol 5 (10) ◽  
pp. 988-996 ◽  
Author(s):  
Kevin Vivot ◽  
Valentine S. Moullé ◽  
Bader Zarrouki ◽  
Caroline Tremblay ◽  
Arturo D. Mancini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document